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Abstract

Estimating Bayesian Vector Autoregressions (VARs) involving the Cholesky de-
composition is sensitive to the ordering of variables. We treat the ordering as
unknown, develop a prior over variable orderings and Markov Chain Monte Carlo
(MCMC) methods for posterior sampling over orderings.

JEL classification: C11, C32
Keywords: Variables ordering, Plackett-Luce model

∗We would like to thank Rafaella Giacomini and participants at the NBER-NSF SBIES conference
2022 for useful comments.
†University of Strathclyde (Address: Department of Economics, University of Strathclyde, 199 Cathedral

Street, Glasgow, G4 0QU. E-mail: ping.wu@strath.ac.uk)
‡University of Strathclyde



1 Introduction

Bayesian VARs have traditionally been estimated in reduced form, where the left hand
side of the VAR equation involves an n×1 vector of dependent variables, yt, and the error
covariance matrix for the VAR, Σt, is unrestricted (apart from being positive definite).
However, as VARs have become larger and larger, researchers have increasingly been
estimating VARs in a structural form where the left hand side of the VAR is B0yt and
the error covariance matrix is diagonal. B0 is a lower triangular matrix based on the
Cholesky decomposition of Σt. The fact that the error covariance matrix of the structural
VAR is diagonal means that Bayesian estimation can proceed one equation at a time. As
shown, e.g., in Carriero et al. (2019) the MCMC algorithm based on the reduced form
VAR requires O(n6) elementary operations to take one draw of the VAR coefficients.
This is reduced to O(n4) with the structural VAR. Thus, in larger VARs, it can be
computationally impractical to work in the reduced form, but feasible when working in
the structural form.1

However, the use of the Cholesky decomposition of the reduced form error covariance
matrix leads to order dependence. That is, posterior and predictive results will vary
depending on the way that the variables are ordered in the VAR. To clarify the precise
nature of this order dependence, we highlight the discussion of sub-section 3.1 of Carriero
et al. (2019) who demonstrate that the posterior of the structural form VAR coefficients,
conditional on Σt is invariant to ordering. The lack of order invariance arises due to the
fact that the implied prior on Σt is not order invariant. Bognanni (2018) and Arias et al.
(2021) demonstrate the importance of the ordering issue in VARs with stochastic volatil-
ity (SV) both theoretically and empirically. Arias et al. (2021) shows that, although
point forecasts are not sensitive to the way variables are ordered, predictive standard
deviations can be substantially affected by the way that the variables are ordered. The
VARs considered in Arias et al. (2021) are all low dimensional. Chan et al. (2021) con-
sider ordering issues in high dimensional VARs and demonstrate that the theoretical and
empirical findings of Arias et al. (2021) hold with additional force in higher dimensions.
Thus, there is growing theoretical and empirical evidence that ordering issues are impor-
tant, particularly in the large VARs that cannot easily be estimated in reduced form due
to the computational burden.

These considerations have stimulated interest in order invariant approaches. Reduced
form estimation of VARs is order invariant with commonly-used priors, but is not scal-
able to large VARs. Chan et al. (2021) critiques various order invariant approaches and
proposes a new order invariant approach which avoids the use of the Cholesky decompo-
sition, relies on stochastic volatility to identify the model and is scalable. Wu and Koop

1Numerical instability issues can also plague the Bayesian estimation of reduced form VARs due to
the need to invert and/or take Cholesky decompositions of enormous posterior covariance matrices for
the VAR coefficients.
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(2022) develop an order-invariant approach based on Eigendecomposition. The present
paper adopts a different strategy to address the ordering issue. We retain the Cholesky
decomposition of the reduced form error covariance but develop methods for finding the
optimal ordering of the variables. In this, it shares some similarities to Levy and Lopes
(2021) which also uses the Cholesky decomposition for the error covariance matrix for a
multivariate time series model and develops Bayesian methods for searching over variable
orderings. But the model class they use is different from ours and they use approximate
discounting methods which contrasts with our use of MCMC methods. In addition, they
do not use a prior over variable orderings.

We treat the ordering of variables in the VAR as unknown and estimate it using Bayesian
methods. We do so by developing a prior over variable orderings. The Plackett-Luce
distribution is commonly used for the likelihood function for rank ordered data. We use
it, not for the likelihood function, but rather as a prior. We develop MCMC methods
for the posterior that results. Our model is a Bayesian VAR with SV and Placket-Luce
prior over variable orderings which we abbreviate to BVARSV-PL. In a macroeconomic
forecasting exercise involving a VAR with 20 variables we compare our BVARSV-PL to
a BVARSV which is identical in all respects except that a single ordering is used. We
choose this model to be that of Chan (2021) and, for BVARSV, use the same ordering
as in this paper. This can be interpreted as a model which is a special case of ours, but
has a prior which dogmatically imposes a particular variable ordering. We find that our
BVARSV-PL forecasts better than this BVARSV, thus demonstrating the importance of
ordering choice in VARs for macroeconomic forecasting.

2 Bayesian Inference on Orderings in VARs

In this section, we develop Bayesian methods for carrying out inference on ways of ordering
the variables in VARs. After defining the likelihood function for our VAR, we develop
our Plackett-Luce prior on variable ordering. Subsequently, we develop MCMC methods
which allow for posterior inference and prediction.

Our VAR with stochastic volatility is:

yt = a + A1yt−1 + · · ·+ Apyt−p + B−10 εt, εt ∼ N (0,Dt) , (1)

where a is an n×1 vector of intercepts, A1, . . . ,Ap are n×n matrices of VAR coefficients,
B0 is an n × n matrix, and Dt = diag

(
eh1,t , . . . , ehn,t

)
is diagonal. Each of the log-

volatilities follows a stationary AR(1) process:

hi,t = φihi,t−1 + uhi,t, uhi,t ∼ N
(
0, ω2

i

)
where N (·, ·) denotes the Gaussian distribution.2

2It is simple to extend our methods to the homoskedastic VAR or to allow for Ai for i = 1, . . . , p to
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B0 is

B0 =


1 b1,2 . . . b1,n
b2,1 1 b2,n

...
. . .

...
bn,1 . . . bn,n−1 1

 . (2)

A common assumption, based on taking the Cholesky decomposition of the reduced
form error covariance matrix, is that B0 is a lower triangular matrix with ones on the
diagonal. It is this which leads to order dependence as shown, e.g., in Chan et al. (2021).
But the lower triangularity assumption has the advantage that it leads to simple and fast
Bayesian computation. Hence, in this paper, we retain the lower triangularity assumption
but express uncertainty over which lower triangular form is appropriate. To be precise,
we use priors which rule out all forms for B0 except those that can be, via permutations
of the columns of the matrix, put into a lower triangular form with ones on the diagonal.

Before discussing our prior for B0, we emphasize that we make standard assumptions
for the other parameters in this model (i.e. the VAR coefficients and those in the SV
processess). There are a range of possible priors for the VAR with SV which could be
used. In our empirical work, we use the prior of Chan (2021).3

To describe the prior for the orderings, we introduce a discrete random 1 × n vector
ρ which can take on realizations ρl for l = 1, .., L. Each ρl defines an ordering of the
variables with ρl1 being the variable which takes the first place under ordering l, ρl2 the
second, etc. For instance, in a VAR with 3 variables there are 6 possible orderings (e.g.
1,2,3; 1,3,2; 2,1,3; etc.) and, thus, L = 6. If ρ2 = (1, 3, 2), then the prior for B0

conditional on ρ2 will imply a lower triangular form for B0 consistent with the variables
being ordered as (1,3,2).

We stress that the variables in yt are ordered in a particular way (from variable 1 through
variable n) and that they always appear in this order in the model. When we refer to
variable orderings and lower triangular forms this relates to B0 with the idea being that,
through appropriate permutations of its columns, it becomes lower triangular. That
is, formally the variables in yt never change order, nor is B0 itself necessarily lower
triangular. However, we consider a prior which only allows for choices of B0 which can be
transformed into lower triangular form after appropriate switching of its columns. This

be time varying. Allowing for B0 to be time varying would be a greater challenge, but could be done by
replacing our Plackett-Luce prior with a dynamic Plackett-Luce prior.

3A word is in order about identification. The homoskedastic version of our model is unidentified,
although adding SV identifies the model as shown in Bertsche and Braun (2022). It is well-known that
identification is not necessary to carry out Bayesian prediction in models which have proper priors. Even
for the homoskedastic version of our model, updating will occur in the sense that the posterior will differ
from the prior. This is an example of what Giacomini et al. (2022) call uncertain identification.
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is equivalent to considering all possible structural VARs with lower triangular triangular
impact matrices for different variable orderings. When we use phrases below which refer
to different orderings of the variables, they should be interpreted in this context.

For each choice of l we restrict B0 to lower triangular form (after permutations) through
a Dirac spike-and-slab prior. Lower triangularity is obtained if, for i < j, i, j = 1, . . . , n,
variable ρli is ordered before variable ρlj, i 6= j, then it is zero, otherwise it is non-zero.
Thus,

p
(
bρli,ρlj | ρ = ρl

)
= 1(i<j)∆0

(
bρli,ρlj

)
+ 1(i>j)N (ab, Vb) , i 6= j. (3)

We set c = 0.0001 and Vb = 1.

This defines the prior for B0 conditional on a specific ordering.

We now need a prior over ρ. When dealing with ordered or ranked data, the Plackett-Luce
model, (Luce, 1959; Plackett, 1975), is a popular one.4 The Plackett-Luce distribution is
parameterized by the parameter λj > 0 for j = 1 . . . n which represents the skill rating
or ability of each variable (i.e. λj is the probability that variable yj,t is ordered first in
the VAR). Our prior is

p
(
ρ = ρl | λ

)
=

n∏
i=1

λρli∑n
k=i λρlk

(4)

where λ = {λi}ni=1. It is a hierarchical prior in that λ is treated as unknown and estimated.

There is an alternative way of writing the Plackett-Luce model which involves introducing
a latent variable zi for each variable

zi | λi ∼ E (λi) , i = 1, 2, . . . , n (5)

where E denote the exponential distribution. If we define

p
(
ρ = ρl | z

)
= Pr

(
ρl1 = min{zρl1 , · · · , zρln}

)
× · · · × Pr

(
ρln−1 = min{zρln−1

, zρln}|zρl1 , · · · , zρln−2

)
.

(6)

and calculate

p
(
ρ = ρl | λ

)
=

∫
p
(
ρ = ρl | z

)
p (z | λ) dz, (7)

4The Plackett-Luce model assumes the ranking is complete, an assumption we maintain in this paper.
However, it is worth noting that Bayesian methods for the extended Plackett-Luce model are available
(Johnson et al., 2021) and could easily be used in our approach. This model allows for the ranking to be
incomplete which, in some cases, could be useful for VAR ordering problems. For instance, a researcher
may wish to know whether a block of macroeconomic variables is ordered before or after a block of
financial variables but does not care about the ordering of variables within each block.
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it can be shown to be the same prior as in (4).

Finally, we require a prior for λ, which is the vector of abilities for the variables. For
these, we adopt independent Gamma distributions:

p(λ) =
n∏
i=1

G (λi; aλ,i, bλ,i) .

As explained in Caron and Doucet (2012), the hyperparameters bλ,i are just scaling pa-
rameters on λi. As the likelihood is invariant to a rescaling of the λi, these hyperpa-
rameters can be fixed without influencing inference. Following Henderson and Kirrane
(2018) we set bλ,i = 1. Following Caron and Doucet (2012) we estimate the other set of
prior hyperparameters, aλ. We begin by setting aλ,i = aλ for i = 1, . . . , n which leads
to an exchangeable prior specification in which we believe that some variables are better
than others but we have no beliefs about which the stronger and the weaker variables
are (Henderson and Kirrane, 2018). Thus, we assume λi ∼ G(aλ, 1) and treat aλ as an
unknown parameter and give it a noninformative prior (i.e. Uniform over the positive
real line).

Posterior inference is carried out using an MCMC algorithm. The MCMC algorithm
for the VAR coefficients, B0 and the SV processes, conditional on a given ordering, is
standard, see Chan et al. (2021) and will not be given here. The algorithm for drawing
z, which can then be used to provide draws of ρ using (6), is provided in the Appendix.
Intuitively, it will first search over all n variables to draw the variable to be ordered first,
then search over the remaining n − 1 variables to find the variable ordered second, etc.
This we call the forward step and it leads to a draw we label z1j for j = 1, . . . , n. We then
repeat the process in reverse ordering (i.e. first drawing the variable ordered last, then
the variable ordered second last, etc.), leading to z2j for j = 1, . . . , n. This is the backward
step. Theoretically, we could use only the forward or the backward step in a valid MCMC
algorithm, but we find MCMC convergence to be much better by including both steps.
These appear in the conditional posterior for λ. In particular, for i = 1, . . . , n, we draw
the ability parameters from:

λi | z, aλ ∼ G

(
aλ + wi, bλ +

2∑
k=1

n∑
j=1

zkj

)
. (8)

where wi denotes the total number of wins of variable i (i.e. cases where variable i is
ordered before another variable). If we let wij denote the number of cases where i beats
j, then wi =

∑n
j=1,j 6=iwij.

For aλ, we use the Metropolis-Hastings step proposed in Caron and Doucet (2012). It
proceeds by taking candidate draws, denoted log (acλ), from N (ln (aλ) , ω

2), where ω2 is
a tuning parameter and we set ω2 = 0.12 in our application. The acceptance probability
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for acλ is given by

min

{
1, b

n(acλ−aλ)
λ

(
Γ (aλ)

Γ (acλ)

)n
(λ)a

c
λ−aλ

}
,

where Γ(·) denotes the Gamma function.

3 Empirical Application

We use the first twenty variables, transformed and ordered in the same way, from the
data set used in Chan (2021) but we update the data set so that it runs from 1960Q1
through 2021Q3. For brevity, we do not provide details here but note that four impor-
tant variables are GDP (GDPC1), industrial production (INDPRO), the unemployment
rate (UNRATE) and the consumer price index (CPIAUCSL). The benchmark model is
the BVARSV with variables in the same order as in Chan (2021). We refer the reader
to the the label on the Y-axis of Figure 1 which lists the variables in the order which
they enter the BVARSV. All other modelling choices (i.e. prior and lag length) are the
same as in Chan (2021) for both BVARSV and BVARSV-PL. For BVARSV-PL we addi-
tionally require the prior over the orderings which is described in the preceding section.
The forecasting exercise uses an evaluation period beginning in 1988Q1. Forecasts are
iterative for horizons h = 1 and h = 4. To assess forecasting accuracy, we use root mean
square forecast errors (RMSFEs) for point forecasts and average log predictive likelihoods
(ALPLs) for density forecasts. These are benchmarked so that they represent percentage
improvements in forecast performance of the BVARSV-PL relative to the BVARSV.

MCMC convergence was checked by analyzing the difference between multiple Markov
chains obtained from different starting values. Twenty Monte Carlo Markov chains, each
initiated at a random draw of ρl, l = 1, . . . , 20 are taken. Initial values for B0 are either
set to 0 or 0.5 depending on the initial value for ρl. Each Markov chain was run for 20,000
iterations. Convergence of each parameter in ρ was checked with the Gelman and Rubin
diagnostics in Gelman and Rubin (1992). Table 1 reports the 10 largest diagnostics. As
Brooks and Gelman (1998) have suggested, if diagnostics are less than 1.2, one can be
confident that convergence has been reached.

Table 1: Gelman and Rubin diagnostics (the 10 largest)

ρ3 ρ18 ρ19 ρ5 ρ7 ρ14 ρ4 ρ1 ρ13 ρ20

1.12 1.03 1.02 1.02 1.02 1.02 1.01 1.01 1.01 1.01

Evidence on posterior ordering is presented in Figure 1. This presents the probability
(obtained by averaging over MCMC draws) that each variable appears in each possible
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order. For instance, the fact that box in the row labeled FEDFUNDS and column labelled
1 is dark blue means there is a probability near one that the FEDFUNDs should be
ordered first. It turns out that there are many probabilities near one or near zero,
with few values in intermediate regions and is choosing an ordering of variables that is
very different from that of Chan (2021). Note that the ordering used in Chan (2021),
which puts macroeconomic variables first and financial variables last, is commonly used in
many large VAR forecasting papers. But we are finding strong evidence that the optimal
ordering involves financial variables to be ordered first.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

GDPC1
PCECC96

INDPRO
IPFINAL

PAYEMS
MANEMP
CE16OV

CIVPART
UNRATE
HOANBS

HOUST
PERMIT

PCECTPI
CPIAUCSL

OPHNFB
FEDFUNDS

TB3MS
GS1

GS10
BAA10YM

posterior ordering
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Figure 1: Posterior Ordering: BVARSV-PL

Table 2 shows that estimating the ordering leads to substantial forecast improvement
relative to a strategy of following a single conventional ordering of variables. We find
that there is not much difference between BVARSV-PL and BVARSV in terms of their
point forecasts (i.e. RMSFEs for one model do not consistently beat the other), but that
the density forecasts produced by BVARSV-PL are substantially better (i.e. ALPLs are
much higher for all variables and for both forecast horizons).

Table 2: Forecasting Results

% gains in RMSFE % gains in ALPL

h=1 h=4 h=1 h=4

GDPC1 -5.51 -0.49 13.51 51.20
INDPRO 0.34 -0.83 14.70 2.79
UNRATE -9.50 -18.65 97.68 265.95
CPIAUCSL 0.23 1.32 3.15 16.98
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4 Conclusions

Bayesians commonly work with structural VARs which involve the Cholesky decomposi-
tion of the error covariance matrix. But posterior and predictive results can depend on
the way the variables are ordered in the VAR. To overcome this problem, while retaining
the Cholesky-transformed VAR, this paper has developed an algorithm for finding the
optimal ordering of variables. We find the algorithm to lead to forecast improvements
relative to a strategy of choosing a particular ordering a priori.
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Appendix: MCMC algorithm for ρ

This appendix describes how draws from the orderings are taken from their conditional
posterior density: p (ρ | y,A,D,B0, z, λ, aλ).

Our algorithm consists of two steps: the forward step and the backward step.

The forward step:

1) we first decide which variable will take the first place. There are n variables in total,
so we compare the n variables. The winner needs to beat all other n− 1 variables. The
success of variable i means all other variables will not appear in this equation, that is, the
i-th row in B0 will be zero and the prior will come from the Dirac spike component. The
success of variable i also means this variable will appear in all other equations, that is,
the i-th column in B0 will be non-zero and the prior will come from the slab component
(except itself, because it always appears in its own equation. This is not influenced by
the ordering).

Let bi· denote the i-th row in B0 and delete the i-th element (which is the variable itself),
b·i denote the i-th column in B0 and delete the i-th element. Let pi denote the success
probability of variable i. Then:

pi = p (ρ1 = i | B0) ∝
λi∑n
k=1 λk

φ (bi·; 0, c)φ (b·i; ab, Vb) ,

where φ denotes the pdf of the Normal distribution. Hence, after normalization, we
obtain

pi =
pi∑n
k=1 pk

.

We can sample from the multinomial distribution as follows:

a) Create an array p containing the cumulative probabilities of pi, i = 1, 2, · · · , n;

b) Generate U , a uniform(0,1) random value;

c) Select the first index such that pi > U .

2) conditioning on the first place, we can decide which variable will take the second place.
There are n−1 variables in total, so we compare the n−1 variables. The winner needs to
beat all other n− 2 variables. The success of variable j means all other variables will not
appear in this equation, that is, the j-th row in B0 will be zero and the prior will come
from the Dirac spike component (except the variable which takes the first place). The
success of variable j also means this variable will appear in all other equations, that is,
the j-th column in B0 will be non-zero and the prior will come from the slab component
(also, except the variable which takes the first place).
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Let bj· denote the j-th row in B0, delete the j-th element (which is the variable itself)
and delete the ρ∗1-th element (which takes the first place), b·j denote the j-th column
in B0, delete the j-th element and delete the ρ∗1-th element. Let pj denote the success
probability of variable j. Then:

pj = p (ρ2 = j | B0) ∝
λj∑n

k=1,k 6=ρ∗1
λk
φ (bj·; 0, c)φ (b·j; ab, Vb) .

Hence, after normalization, we obtain

pj =
pj∑n

k=1,k 6=ρ∗1
pk
.

...

We can proceed until the (n − 1)-th place. The remaining variable will automatically
take the last place.

The backward step:

This is almost the same as the forward step, except that we first draw the variable ordered
last, then draw the variable ordered second last, etc..
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