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TAR Model: checklist

o Create dummy variable to represent threshold.
@ Run the regression.

@ Interpret the output of each model:
Does the AR coefficient change across regimes?
Can you comment on the magnitude of the AR coefficient in
each regime?
Is this change statistically significant?

o Compare models:
Does the AR(1), homoscedastic or heteroskedastic model have
the lowest 1C?
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Ex1: Starting

@ Create variables
14 generate logSP500
15 generate CH_SP50@

log(SP5ee)
D.logSP5e8

log first difference of stock prices (interpretation?)
@ Run AR (1) regression
///AR(L1) MODEL============mm oo e oo

regress CH_SP560 L.CH_SP5ee

can you write the equation for this model?

@ Estimate IC
///INFORMATION CRITERIA

estat ic
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Ex1: Starting

@ Write out the TAR model:
Using two equations where we have coefficients p; and p, (see
lecture slide 19).
Using one equation and a dummy variable where we have two
coefficients p; and 7 see lecture slide 10).

@ Create dummy variable
*following material for TAR model------------c-mommmmmmoamo.

generate SP_threshl = @
replace SP_threshl = CH_SP5@e@ if CH_SP5ee>e
generate a variable x; which has a value of 0
x¢ =y if yy >0
@ Run Homoskedastic TAR using dummy variable
///BREAK IN MEAN (HOMOSKEDASTIC TAR)

regress CH_SP5@@ L.CH_SP5@@ L.SP_threshl
estat ic

regress y; on y;_1 and X;_1
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Ex1: Starting

o Interpret coefficients
What are the values of p1, pp, and 77 (see slide 10)
Are coefficients different across regimes?
Is this statistically significant?
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@ Gary has given you code to estimate the heteroskedastic TAR.
This model is estimated using two separate regressions and no
dummy variables.

@ Hint 1: we obtain py, p, straight away.

@ Hint 2: we get two different information criterion from our two
regressions.

@ Hint 3: we need one overall information criterion for the
heteroskedastic TAR.

@ Which is best: AR (1), homoscedastic or heteroskedastic?

@ Hint 4: information criteria and p-values might not always give
us the same answer.
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Ex1F: Model

e AR(1) Model
Ye= QY1+ U

e TAR Model

) et (Vo1 — 7 < (Yeer — 7)
Y = Y]
paYe—1+ €, (V1 —¥) > (Vo1 —¥)

@ Interpretation of regimes:
Stock market volatility last month < average stock market
volatility;
Stock market volatility last month > average stock market
volatility.
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Ex1F: CODE Homoskedastic TAR

///PART F
sum CH_SP5@0

generate z1 = (L.CH_SP500 - ©.005303)"2
generate z2 = (CH_SP560 - ©.005303)"2

sum z1
sum z2

generate SP_thresh2 = @
replace SP_thresh2 = CH_SP5@@ if z2> .0012676

///BREAK IN MEAN (HOMOSKEDASTIC TAR)

regress CH_SP500 L.CH_SP56@ L.SP_thresh2
estat ic

@ Sum used to obtain mean of stock price index growth, y
@ Generate threshold trigger, z,
@ Sum used to obtain mean of threshold trigger, Z,

@ Generate dummy = 0 if zo; < Z;
Generate dummy = y; if zo > 2

@ Use the lagged dummy in the regression
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Ex1F: CODE Heteroskedastic TAR

///BREAK IN MEAN AND VARIANCE (HETEROSKEDASTIC TAR)
///Post-break data

regress CH_SP500 L.CH_SP508 if z1>=.0012694
estat ic

///Pre-break data

regress CH_SP500 L.CH_SP560 if z1<.0012694
estat ic

///Using Stata Threshold function - tau is estimated

threshold CH_SP500, regionvars(1l.CH_SP500) threshvar(zl)
Sum used to obtain mean of stock price index growth, y
Generate threshold trigger, z; ¢
Sum used to obtain mean of threshold trigger, z;

Run regression using z; ¢ > Z

Run regression using Z;; < Z
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Ex1F: Some output

e Model 1: AR (1)

Vi

CH_SP5@8 | Coefficient std. err. t Pt [95% conf. interval]
CH_SP508
L. .2435219  .0369678  6.59 ©0.600  .1769386  .3161051
_cons. .0040433  .0013316  3.04 ©.002  .0014289  .0066578
+ ///INFORNATION CRITERIA
>
. estat ic
Akaike's information criterion and Bayesian information criterion
Model‘ N 11(null) 11(model) daf ATC BIC

Note: BIC uses N = number of observations. See [R] BIC note.

0.004 + 0.244y,_;
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Ex1F: Some output

e Model 2: AR(1) with Break in Mean:

CH_SP56@ | Coefficient std. err. t Pt [95% conf. interval]
CH_sP5ee
L1. 0997625 .879729 1.25 @.211 -.8567793 +2563043
SP_thresh2
1839458 .0904436 2.03 0.042 +0063667 +3615249
_cons 0049715 .0014048 3.54 @.000 .0022134 .0077296
. estat ic

Akaike's information criterion and Bayesian information criterion

Model N 11(null) 11(model) ¢f ATC BIC

690  1321.97 1345.142 3 -2684.284 -2670.674

@ y; = 0.005+ 0.100y;_1 + 0.184x;_; where x; = D;y;
@ Hy:v=0
@ P-value = 0.042

@ Reject Hy, evidence of a break in mean at the 5% significance
level.

@ Model 2 IC < Model 1 IC, evidence of a break in mean.
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Ex1F: Some output

@ Model 3: AR(1) with Break in Mean and Variance (z < 2)

Source ss of ms Number of obs = 528

F(1, 526) - 1.66

Model | .001667275 1 .001667275 Prob > F = e.1976

Residual .52691225 526 .001001734  R-squared = e.0032

Adj R-squared =  0.0013

Total | .528579525 527 .001002997 Root MSE = .03165

CH_SP5@0 | Coefficient Std. err. t plt] [95% conf. interval]
CH_sP500

L. .0964228  .0747399  1.29 ©0.198  -.0504025  .2432481

_cons .0051385  .0015647  3.41 0.001 .0021824  .0080945

@ y, = 0.005 + 0.096y; 1, var (€1;) = 0.527
o Note: coefficient p; is insignificant
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Ex1F: Some output

@ Model 3: AR(1) with Break in Mean and Variance (z > Z)

. regress CH_SP500 L.CH_SP500 if z1>=.0012694

Source ss of s Number of obs = 162

F(1, 160) = 29.89

Model .05447524 1 .65847524 Prob > F = 6.0000

Residusl | .291651638 160 .001822819 R-squared = e.asu

Adj R-squared = ©.1521

Total | 346126278 161 .002149853 Root MSE = .eaze9

CH_SP5@0 | Coefficient std. err. t et [95% conf. interval]
CH_SPsee

L. .2832879  .€518203  5.47 ©.600 .1809478  .3856279

_cons .0045138  .0033604  1.34 ©.181  -.0021226  .0111502

@ y, = 0.005 + 0.283y;_1, var (é3;) = 0.292

o Note: coefficient p, is significant, lag of stock market growth
has greater explanatory power in high volatility regime

@ The improved model fit results in lower estimated error variance,
var (€3;) < var (€1;)
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Ex1F: Some output

@ Model 2: AR(1) with Break in Mean:

Model N 11(null) 1l(model) of AIC BIC

690 1321.97 1345.142 3 -2684.284 -2670.674

@ Model 3: AR(1) with Break in Mean and Variance:

Model N 11(null) 11(model) df AIC BIC

162  268.1643  282.0352 2 -560.6705 -553.8953

@ Model 3 IC: Add together IC for two regimes
AlIC: -2706, BIC: -2691
Model 3 IC < Model 2 IC, evidence of a break in mean and
variance.

e Conclusions:
When modelling stock market index growth, it matters whether
stock market volatility is high or low.
Evidence that high and low volatility regimes have different AR

coefficients and error variances.
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MARKOV SWITCHING model: checklist

@ Estimate model using “mswitch” command
@ Interpret the output of each model:
Do coefficients/error variances change across regimes?
How long does each regime last for?
What are the probabilities of staying in the regime or changing
to a different regime?
What is the probability of being in each regime at each point in

time?

@ Compare models:
Look at which model specification has the lowest IC.
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Ex2: Tips

mswitch dr RGDP_CH, switch(L.RGDP_CH L2.RGDP_CH L3.RGDP_CH L4.RGDP_CH) varswitch

@ dr = dynamic regression, allow a quick adjustment after the
process changes states

o switch(L.RGDP¢H), regime switching in AR coefficients
@ varswitch, regime switching in error variance

@ HINT: use help "mswitch” to figure our how to add more lags
and states

@ Main output
Do coefficients vary across regimes?
Do error variances (labelled “sigma 1" /"sigma 2") vary across
regimes?
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@ estat transition
pll gives probability of staying in regime 1
pl2 gives probability of switching from regime 1 to regime 2
p22 gives probability of staying in regime 2
p21 gives probability of switching from regime 2 to regime 1
@ estat duration estimated duration of each regime

@ Note: confidence intervals may be wide if we have few
observations and estimation is imprecise
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@ predict fprob, pr smethod (filter)
Estimates the probability of being in regime 1 at each point in
time
This graph in particular may provide a clue about how we can
interpret our regimes
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A note on persistence

o If we have: y; = p1ye 1+ U

@ We want to check for persistence e.g. is the interest rate this
period related to last period's value?

If p1 > 0 we have persistence

The larger p; is, the more persistent our variable

By looking at the size of p; and p, we can determine whether
the level of persistence is different across regimes.

An example of a persistent variable (in developed countries) is
the interest rate. We want interest rate changes to be "smooth”.

An example of a less persistent variable is GDP growth.
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