
1 Extremum estimator

An extremum estimators are a wide class of estimators for parametric models that are calculated through

maximization (or minimization) of a certain objective function, which depends on the data. The M-estimator

is a subcategory or a type of extremum estimators. The types of extremum estimators di�ers based on the

objective functions. For instance

1. Classical Minimum Distance (CMD) extremum estimator is θ̂ = argmax
θ

Qn(w; θ) and Qn(w; θ) =

−ng′

n(w; θ)Wngn(w; θ) where w is your entire data and θ is the parameter vector. GMM is a spe-

cial case of the CMD estimator.

2. Maximum likelihood (ML) (M-estimator) is θ̂ = argmax
θ

Qn(w; θ) and Qn(w; θ) = 1
n

∑n
i=1 logf(wi; θ)

and logf(wi; θ) is your log-likelihood function.

3. Nonlinear Least Squares (ML) (M-estimator) is θ̂ = argmax
θ

Qn(w; θ) and Qn(w; θ) = 1
n

∑n
i=1−ε̂2i and

ε̂i = yi − φ(xi; θ) , where φ(xi; θ) is your nonlinear function.

1.1 Maximum Likelihood Estimation of the OLS

We have our linear regression model across n observations

y = Xβ + ε, ε ∼ N(0, σ2In),

which can be written as

L(β, σ2|y) = f(y|β, σ2) ∼ N(Xβ, σ2In),

and the pdf of this density is

L(β, σ2|y) = (2π)−
n
2 det(σ2In)−

1
2 exp[−1

2
(y −Xβ)′(σ2In)−1(y −Xβ)],

ln(L(β, σ2|y)) = −n
2
ln(2π)− n

2
ln(σ2)− 1

2σ2
(y −Xβ)′(y −Xβ),

ln(L(β, σ2|y)) = −n
2
ln(2π)− n

2
ln(σ2)− 1

2σ2
(y′y − 2β′X′y + β′X′Xβ),

Let's assume θ = (β, σ2) is the parameter vector. Thus the the maximum likelihood estimation is
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θ̂MLE = argmax
θ

ln(L(θ|y)),

Then, all we need to do is take the F.O.C of ln(L(β, σ2|y)) respect to β and σ2, and set them both to equal

to 0.

∂ln(L(β, σ2|y))

∂β
= − 1

2σ2
(2X′Xβ − 2X′y) = 0,

∂ln(L(β, σ2|y))

∂σ2
= − n

2σ2
+

1

2(σ2)2
(y −Xβ)′(y −Xβ) = 0,

When we are taking the derivative respect to β, we need to apply this rule ψ(x) = xAx′ and the ∂ψ(x)
x =

x′(A + A′) and if A is a symmetric matrix then ∂ψ(x)
x = 2x′A.

We can solve the above system of equations since we have two unknowns and two equations,

β̂MLE = (X′X)−1X′y,

σ̂2
MLE =

1

n
(y −Xβ̂MLE)′(y −Xβ̂MLE).

2 Wald, LM and LR test

For the ML estimator, there are three types of tests:

1. Wald test: All you need is the unrestricted ML estimator θ̂ML and the asymptotic variance of the ML

estimator AV AR(θ̂ML). A simple example could be, let's assume we only one ML estimator θ̂0 and we

want test whether θ̂0 is equal to a hypothesised value of θ0. Then, H0 : θ̂0 = θ0, HA : θ̂0 6= θ0 and Wald

statistics is W = (θ̂0−θ0)2

AV AR(θ̂ML)
→
d
χ2
1.

2. Lagrange Multiplier (LM) test: Imagine you want to test �nd a ML estimator based on some certain

constraint, for example θ̃ML = argmin
θ

Qn(θ) s.t a(θ) = θ0. Basically the LM test is to test whether

these contraints are binding. Then, H0 : a(θ) = θ0, HA : a(θ) 6= θ0 and LM statistics is U(θ0)
2

I(θ0)
, where

U(θ) = ∂logL(θ)
∂θ is gradient of the log-likelihood and I(θ0) = −E[∂

2logL(θ)
∂θ2 |θ] is the �sher information.

3. Likelihood ratio (LR) test uses both the unrestricted θ̂ML and restricted ML estimators θ̃ML = argmin
θ

Qn(θ)

s.t a(θ) = 0. Then, H0 : a(θ) = θ0, HA : a(θ) 6= θ0 and the LR test statistics is given by 2{log(θ̂ML) −
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log(θ̃ML)} →
d
χ2
r where r is the no. of restrictions in the constraint and log(θ̂ML) − log(θ̃ML) is the

di�erence between the log-likelihoods between the unrestricted ML and restricted ML estimators.

3 Cramer-Rao Inequality

Cramér�Rao bound (CRB) expresses a lower bound on the variance of unbiased estimators of a deterministic

(�xed, though unknown) parameter, stating that the variance of any such estimator is at least as high as the

inverse of the Fisher information.

var(θ̂(z)) ≥ I(θ0)−1,

where θ̂(z) is an unbiased estimator of θ with a �nite variance-coariance matrix and I(θ0) is the �sher informa-

tion matrix. The Information Matrix Equality assumes the �sher information matrix equals the negative of the

expected value of the Hessian (matrix of second partial derivatives) of the log likelihood I(θ0) = −E[∂
2logL(θ)
∂θ2 ].

An unbiased estimator which achieves this lower bound is said to be asymptotically e�cient since it has the

smallest asymptotic variance in the class of consistent and asymptotically normal estimators.

4 Probit Model

The likelihood function for the probit model with a random e�ect is

L(β, σ2|y) =

n∏
i=1

[Φ(x
′

iβ + αi)]
yi [1− Φ(x

′

iβ + αi)]
1−yi ,

where Φ is the CDF of a standard normal distribution. Then the log-likelihood

ln(L(β, σ2|y)) = yi

n1∑
i

ln([Φ(x
′

iβ + αi)]) + (1− yi)
n2∑
i

ln([1− Φ(x
′

iβ + αi)]),

where n1 is the total number of observations when yi = 1 and n2 is the total number of observations when

yi = 0, and n = n1 + n2. If we de�ne the parameter vector θ = (β, σ2), then the ML estimation is given by

θ̂MLE = argmax
θ

ln(L(θ|y)),

where we need to take both the partial derivatives ∂ln(L(β,σ2|y))
∂β and ∂ln(L(β,σ2|y))

∂σ2 , and set them equal to zero,

and solve for the parameters. The above log-likelihood is non-linear and non-analytic, therefore we cannot

simply solve it with a pen and paper. We have to use numerical optimisation techniques, such as Newton-

3



Rapson method, to obtain the ML estimators for the parameters of the probit model. This is also true for the

logit model.

5 Sample selection model

Consider a sample selection model

yi = x
′

iβ + u1,i,

z
′

iγ + uz,i, > 0

We can de�ne an indicator function di = 1(z
′

iγ + uz,i, > 0) for the sample selection bias which implies when

z
′

iγ + uz,i, > 0 then di = 1 and vice versa. Let's consider a simple example, let's interpret yi as how much we

work and then di can be interpret as whether we work (or are employed) (di = 1) or not (di = 0). Intuitively,

this model is implying that we can only determine how much a person works if they work or are employed.

In the lecture notes, we assume that the errors are

 u1,i

u2,i

 ∼ N(

 0

0

 ,
 σ2 ρσ2

ρσ2 1

),

The likelihood function the sample selection model can be given as

L =

n∏
i=1

[Pr(z
′

iγ + uz,i, < 0)]1−di [f(yi|di = 1)Pr(z
′

iγ + uz,i, > 0)]di ,

Note here Pr(z
′

iγ + uz,i, < 0) is probability that person does not work which is equal to Pr(z
′

iγ + uz,i, <

0) = Φ(−z′

iγ) = 1 − Φ(z
′

iγ), where Φ is denoted as the CDF of the standard normal distribution. Thus,

probability that person works will be Pr(z
′

iγ+uz,i, > 0) = Φ(
z
′
iγ+ρ(yi−x

′
iβ)/σ√

1−ρ2
). f(yi|di = 1) can be interpreted

as the likelihood function for a particular person given that person works or are employed, and is equal to

f(yi|di = 1) = 1
σφ(

yi−x
′
iβ

σ ) where φ is denoted as the pdf of a standard normal distribution. Note f(yi|di =

1) ∼ N(x
′

iβ, σ
2) and 1

σφ(
yi−x

′
iβ

σ ) means the same thing but is written in standard normal distribution form.

However, now the questions state ρ = 0, which implies

 u1,i

u2,i

 ∼ N(

 0

0

 ,
 σ2 0

0 1

),
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there is no correlation in the errors between the two equations. Therefore, the two equations are now inde-

pendent from each other. The �rst equation is just a linear model and likelihood function can be written

as

yi = x
′

iβ + u1,i, u1,i ∼ N(0, σ2),

f(yi|β, σ2) ∼ N(x
′

iβ, σ
2),

L(β, σ2) =

n∏
i=1

f(yi|β, σ2), (1)

and second equation becomes a probit model similar to the �rst question, where the likelihood is de�ned as

L(γ) =

n∏
i=1

[Pr(z
′

iγ + uz,i, < 0)]1−di [Pr(z
′

iγ + uz,i, > 0)]di ,

L(γ) =

n∏
i=1

[1− Φ(z
′

iγ)]1−di [Φ(z
′

iγ))]di , (2)

Then, all we need to do is undertake separate MLE for (1) and (2). Note the ML estimator for a linear model

is the same as the OLS estimator β̂MLE = β̂OLS = (X′X)−1X′y.

6 Logit model

Let's consider a simple example where we have only two outcomes, success or fail. Let's denote p as the

probability of success and 1− p as the probability of failure. The logit model is basically used to estimate this

probability p. We can calculate some sort of probability odds ratio p
1−p and if p = 0.8, this results p

1−p = 4,

which implies that you will likely achieve success 4 times out of the 5 outcomes.

Thus, let's consider a one regressor logit model and the function form is

F (Y ) = p =
exp(β0 + β1x1)

1 + exp(β0 + β1x1)
,

1− p = 1− exp(β0 + β1x1)

1 + exp(β0 + β1x1)
=

1

1 + exp(β0 + β1x1)
,

Then, the odd ratio is
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p

1− p
=

exp(β0 + β1x1)

1 + exp(β0 + β1x1)
÷ 1

1 + exp(β0 + β1x1)

p

1− p
=

exp(β0 + β1x1)

1 + exp(β0 + β1x1)
× 1 + exp(β0 + β1x1)

1
= exp(β0 + β1x1),

Then if we take natural logs on both sides we get

ln(
p

1− p
) = β0 + β1x1,

where the linear model equals to the log odd ratio. Thus, the estimated coe�cients β0 and β1 a�ects the log

odd ratio. Therefore, in the example of the low birthweight, the estimated coe�cient for smoking is about

0.92 which can be interpret as if a person smokes, it will increase the log odd ratio by about 0.92 or it will

increase the odd ratio by about 2.5 (exp(0.92)).

6.1 Marginal e�ect

The marginal e�ect of a logit model is (∂F (y)
∂xi

) just the partial derivative for F (y) with respect to a regressor

xi. In the example of the low birthweight, the marginal e�ect or partial derivative for F (y) with respect

to a regressor is evaluated at the mean observation. For example, if a person age is about 23.2381, their

probability of getting a baby with low birthweight will decrease about 1%. Except for the age and weight at

last menstrual period regressors, all the other regressors are binary variables (0 and 1) and the interpretation

of these marginal e�ects makes limited sense.

6.2 Link function

A link function is a function linking the actual Y to the estimated Y in an econometric model. For example,

as seen above, the logit link function

ln(
p

1− p
) = β0 + β1x1,

and the probit link function is

Φ−1(Y ) = β0 + β1x1,

Therefore, logit and probit models di�ers in their link function. In the example of the low birthweight, the

probit model estimated coe�cients have similar signs to the estimated logit model coe�cients. Thus, this
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implies the results are robust.
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