
1 Mundlak approach

Let's consider a simple example

yit = xitβ + αi + εit,

αi = x̄iγ + vi,

E(αi|xi) = x̄iγ,

where i = 1, . . . , N , t = 1, . . . , T , x̄i = 1
T

∑T
t=1 xit and vi is a time-invariant unobservable that is uncorrelated

to the regressors. The key to the Mundlak approach is to determine if αi and xit are correlated. We can

substitute αi = x̄iγ + vi into yit = xitβ + αi + εit which gives us

yit = xitβ + x̄iγ + vi + εit,

Thus, our Wald test is

H0 : γ = 0,

HA : γ 6= 0,

and Wald statistic is given by W = γ̂
var(γ̂) which is also same as the Huasman statistics.

1. Reject the null hypothesis: This suggests there is statistical evidence that there is correlation between

the time-invariant unobservables and your regressors, namely, the �xed-e�ects assumptions are satis�ed.

2. Do not reject the null hyopthesis: This suggest that the generated regressors are zero, there is evidence of

no correlation between the time-invariant unobservable and your regressors; that is, the random e�ects

assumptions are satis�ed.

Note remember for a random e�ect model the cov(aixit) = 0 has to hold to ensure consistency for the random

e�ector estimator β̂RE and this lead to var(β̂RE) < var(β̂FE). Thus, random e�ector estimator is a more

consistent estimator than the �xed e�ect estimator. However, when cov(aixit) 6= 0, then β̂FE is the sole

consistent estimator out of the two estimators.
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2 Concentrated likelihood

A key di�culty in typical maximization problems is the high dimensionality of θ. One can reduce the number

of dimensions if a subset of the equations can be solved and if the solution can be substituted back into the

likelihood function. Let the parametric vector be partitioned into θ = (θ′1, θ
′
2)′. Suppose that given any θ2,

one can �nd the optimal value of θ1 as a function of θ2 by solving the �rst-order conditions

∂

∂θ1
L(θ|y) = 0 =⇒ θ̂1 = θ̂1(θ2),

Substituting this function into the original log-likelihood yields the concentrated loglikelihood function

Lc(θ2|y) = Lc(θ̂1(θ2), θ2|y),

Since the concentrated log-likelihood Lc(θ2|y) is a function of θ2 only, the dimension of the maximization

problem is reduced. Once the MLE for θ2 is obtained, say, by numerical methods, we can then compute the

MLE for θ̂1 analytically via θ̂1(θ2). We can use a concentrate likelihood function via the OLS, for instance,

recall from last week's tutorial MLE for OLS is

θ̂MLE = argmax
θ

ln(L(β, σ2|y)),

where θ = (β, σ2) and ln(L(β, σ2|y)) = −n2 ln(2π) − n
2 ln(σ2) − 1

2σ2 (y′y − 2β′X′y + β′X′Xβ). We can �rst

take the FOC with respect to β

∂ln(L(β, σ2|y))

∂β
= − 1

2σ2
(2X′Xβ − 2X′y) = 0⇒ β̂MLE = (X′X)−1X′y,

Then the concentrated likelihood function is derived by subsituting β̂MLE back into the log-likelihood function

ln(Lc(β̂MLE , σ
2|y)) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2
(y′y − 2β̂

′

MLEX
′y + β̂

′

MLEX
′Xβ̂MLE),

then we take the FOC of the above concentrated likelihood function with respect to σ2

∂ln(Lc(β̂MLE , σ
2|y))

∂σ2
= − n

2σ2
+

1

2(σ2)2
(y−Xβ̂MLE)′(y−Xβ̂MLE) = 0 =⇒ σ̂2

MLE =
1

n
(y−Xβ̂MLE)′(y−Xβ̂MLE),
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3 Fixed e�ect model

Consider a panel data model

yit = xitβ + αi + uit, (1)

where i = 1, . . . , N and t = 1, . . . , T . The �rst �xed e�ect (FE) assumption is strict exogeneity of the

explanatory variables conditional on αi which is E(uit|xi, αi) = 0. We also should mention the sequential

moment restrictions:

E(uit|xit,xit−1, . . . ,xi1, αi) = 0,

E(yit|xit,xit−1, . . . ,xi1, αi) = E(yit|xit, ai) = xitβ + αi,

What does this restriction mean? After xit and αi have been controlled for, no past value of xit a�ect the

expected value of yit. This condition is more natural than the strict exogeneity assumption, which requires

conditioning on future values of xit as well.

To derive the FE estimator, we �rst need to de�ne (1) as averages:

ȳi = x̄iβ + αi + ūi, (2)

where ȳit = 1
T

∑T
t=1 yit, x̄i = 1

T

∑T
t=1 xit and ūi = 1

T

∑T
t=1 uit. Next, we substract (2) from (1) we get

yit − ȳi = (xit − x̄i)β + (αi − αi) + uit − ūi,

ỹit = x̃itβ + ũit, (3)

where ỹit = yit − ȳi, x̃it = xit − x̄i and ũit = uit − ūi. Similar to OLS, the FE estimator is

β̂FE = (

N∑
i=1

T∑
t=1

x̃
′

itx̃it)
−1

N∑
i=1

T∑
t=1

(x̃
′

itỹit), (4)

To get it in sample error form, we substitute (3) from (4)

β̂FE = (

N∑
i=1

T∑
t=1

x̃
′

itx̃it)
−1

N∑
i=1

T∑
t=1

(x̃
′

it(x̃itβ + ũit)),
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β̂FE = (

N∑
i=1

T∑
t=1

x̃
′

itx̃it)
−1

N∑
i=1

T∑
t=1

x̃
′

itx̃itβ + (

N∑
i=1

T∑
t=1

x̃
′

itx̃it)
−1

N∑
i=1

T∑
t=1

(x̃
′

itũit),

Since we know
∑N
i=1

∑T
t=1 x̃

′

itx̃it)
−1 ∑N

i=1

∑T
t=1 x̃

′

itx̃it = I, then

β̂FE = β + (

N∑
i=1

T∑
t=1

x̃
′

itx̃it)
−1

N∑
i=1

T∑
t=1

(x̃
′

itũit),

Note from the strict exogeneity assumption of E(uit|xi, αi) = 0, it follows that uit and ūi are uncorrelated

with xit and x̄i for t = 1, . . . , T . Thus, this imples x̃
′

itũit = x̃
′

ituit.

β̂FE − β = (

N∑
i=1

T∑
t=1

x̃
′

itx̃it)
−1

N∑
i=1

T∑
t=1

(x̃
′

ituit),

Then we want to �nd

plim
N−→∞

(β̂FE − β) = plim
N−→∞

((

N∑
i=1

T∑
t=1

x̃
′

itx̃it)
−1

N∑
i=1

T∑
t=1

(x̃
′

ituit)),

We want to get the above term is 'sample moment form'

plim
N−→∞

(β̂FE − β) = plim
N−→∞

((
1

NT

N∑
i=1

T∑
t=1

x̃
′

itx̃it)
−1 1

NT

N∑
i=1

T∑
t=1

(x̃
′

ituit)),

Then applying the weak law of large numbers and continous mapping theorem, we get

(
1

N

N∑
i=1

x̃
′

itx̃it)
−1 −→

p
E(x̃

′

itx̃it)
−1,

(
1

N

N∑
i=1

x̃
′

ituit) −→
p

E(x̃
′

ituit),

Then applying the Slutsky theorem,

plim
N−→∞

(β̂FE − β) = plim
N−→∞

(
1

T

T∑
t=1

E(x̃
′

itx̃it))
−1 × plim

N−→∞
(

1

T

T∑
t=1

E(x̃
′

ituit)),

If the strict exogeneity assumption of E(uit|xi, αi) = 0 holds, then E(x̃
′

ituit) = 0 and the above term becomes

zero

plim
N−→∞

(β̂FE − β) = 0.

If the strict exogeneity assumption does not hold, then under the sequential moment restriction, E(x̃
′

ituit) =
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E((xit−x̄i)′uit) = −E(x̄′iuit) because E(xituit) = 0 and so 1
T

∑T
t=1 E(x̃

′

ituit) = − 1
T

∑T
t=1 E(x̄′iuit) = −E(x̄′iūi).

If 1
T

∑T
t=1 E(x̃

′

itx̃it))
−1 is bounded, var(x̄i) and var(ūi) are order of

1
T , and the time-series is weakly dependent,

then the inconsistency from using �xed e�ects when the strict exogeneity assumption fails is of order 1
T .

4 First di�erence model

We can take the �rst di�erence of (1) across time T ,

yi2 − yi1 = (xi2 − xi1)β + ui2 − ui1,
...

yiT − yiT−1 = (xiT − xiT−1)β + uiT − uiT−1,

and we can de�ne it as

4yit = 4xitβ +4uit, (5)

where 4yit = yit − yit−1, 4xit = xit − xit−1 and 4uit = uit − uit−1. Similar to the FE estimator, the FD

estimator will be

β̂FD = (

N∑
i=1

T∑
t=2

4x
′

it4xit)
−1

N∑
i=1

T∑
t=2

(4x
′

it4yit), (6)

Then to get it in sampling error form, we substitute (5) from (6)

β̂FD = (

N∑
i=1

T∑
t=2

4x
′

it4xit)
−1

N∑
i=1

T∑
t=2

(4x
′

it(4xitβ +4uit)),

β̂FD =

N∑
i=1

T∑
t=2

4x
′

it4xit)
−1

N∑
i=1

T∑
t=2

4x
′

it4xitβ +

N∑
i=1

T∑
t=2

4x
′

it4xit)
−1

N∑
i=1

T∑
t=2

4x
′

it4uit,

Since
∑N
i=1

∑T
t=24x

′

it4xit)
−1 ∑N

i=1

∑T
t=24x

′

it4xit = I, then

β̂FD = β +

N∑
i=1

T∑
t=2

4x
′

it4xit)
−1

N∑
i=1

T∑
t=2

4x
′

it4uit,

Then we want to �nd

plim
N−→∞

(β̂FD − β) = plim
N−→∞

(

N∑
i=1

T∑
t=2

4x
′

it4xit)
−1

N∑
i=1

T∑
t=2

4x
′

it4uit),

and we �rst want to get it in sample moment form
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plim
N−→∞

(β̂FD − β) = plim
N−→∞

(
1

NT

N∑
i=1

T∑
t=2

4x
′

it4xit)
−1 1

NT

N∑
i=1

T∑
t=2

4x
′

it4uit),

Then applying the weak law of large numbers and continous mapping theorem, we get

(
1

N

N∑
i=1

4x
′

it4xit)
−1 −→

p
E(4x

′

it4xit)
−1,

(
1

N

N∑
i=1

x
′

it4uit) −→
p

E(x
′

it4uit),

Then applying the Slutsky theorem,

plim
N−→∞

(β̂FD − β) = plim
N−→∞

(
1

T

T∑
t=2

E(4x
′

it4xit))
−1 × plim

N−→∞
(

1

T

T∑
t=2

E(4x
′

it4uit)),

The FD estimator is consistent if E(4x
′

it4uit) = 0 then

plim
N−→∞

(β̂FD − β) = 0,

Recall the sequential moment restriction, which is

E(uit|xit,xit−1, . . . ,xi1, αi) = 0,

E(yit|xit,xit−1, . . . ,xi1, αi) = E(yit|xit, ai) = xitβ + αi,

What does this restriction mean? After xit and αi have been controlled for, no past value of xit a�ect the

expected value of yit. This condition is more natural than the strict exogeneity assumption, which requires

conditioning on future values of xit as well. If the FD estimator is inconsistent, then the sequential moment

restriction implies

E(4x
′

it4uit) = E(x
′

ituit)− E(x
′

it−1uit−1)− E(x
′

it−1uit)− E(x
′

ituit−1) = −E(x
′

ituit−1) 6= 0,

Under stationarity condition, E(x
′

ituit−1) does not depend on t and therefore the FD estimator inconsistency

does not depend on T . Therefore, if our choice were between FE and FD, we would tend to prefer FE because,

when T > 2, FE can have less bias as N −→∞.
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