1 Mundlak approach

Let’s consider a simple example

Yit = Xt B + oy + €54,

Qi =Xy + v,

E(ailxi) = %7,

wherei=1,..., N, t=1,...,T, X; = % Zle x;+ and v; is a time-invariant unobservable that is uncorrelated
to the regressors. The key to the Mundlak approach is to determine if a; and x; are correlated. We can

substitute a; = X;7y + v; into ¥+ = X0 + «; + €;; which gives us

Yit = XS + Xy + vi + €4,

Thus, our Wald test is

Hy:~v=0,

Hy v #0,

and Wald statistic is given by W = which is also same as the Huasman statistics.
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1. Reject the null hypothesis: This suggests there is statistical evidence that there is correlation between

the time-invariant unobservables and your regressors, namely, the fixed-effects assumptions are satisfied.

2. Do not reject the null hyopthesis: This suggest that the generated regressors are zero, there is evidence of
no correlation between the time-invariant unobservable and your regressors; that is, the random effects

assumptions are satisfied.

Note remember for a random effect model the cov(a;x;;) = 0 has to hold to ensure consistency for the random
effector estimator Brp and this lead to var(BRE) < var(BFE). Thus, random effector estimator is a more
consistent estimator than the fixed effect estimator. However, when cov(a;x;;) # 0, then BFE is the sole

consistent estimator out of the two estimators.



2 Concentrated likelihood

A key difficulty in typical maximization problems is the high dimensionality of . One can reduce the number
of dimensions if a subset of the equations can be solved and if the solution can be substituted back into the
likelihood function. Let the parametric vector be partitioned into 6 = (6,65)’. Suppose that given any 65,
one can find the optimal value of 6; as a function of 5 by solving the first-order conditions

0

8791L(9|y) = 0= 6, = 6,(6,),

Substituting this function into the original log-likelihood yields the concentrated loglikelihood function

Le(02]y) = Le(01(62), 62]y),

Since the concentrated log-likelihood L.(f2]y) is a function of 65 only, the dimension of the maximization
problem is reduced. Once the MLE for 6, is obtained, say, by numerical methods, we can then compute the
MLE for 6, analytically via él(ﬁg). We can use a concentrate likelihood function via the OLS, for instance,

recall from last week’s tutorial MLE for OLS is

Ovre = arg?axln(L(ﬁ, Uzb’)),

where 6 = (8,02) and In(L(B3,0%y)) = —2In(27) — 2in(0?) — 555 (y'y — 28'X'y + B'X'X3). We can first
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take the FOC with respect to

dln(L(B, o 1 3
W — 7@(2X’Xﬂ — 2X’y) =0= OByLE = (X’X)’IX'y,

Then the concentrated likelihood function is derived by subsituting B v e back into the log-likelihood function

3 n n 1 NG At ~
Zn(LC(BMLE702|Y)) = —5In(2m) — *l"(UQ) - ?(y/y - 25MLEXIY + 5MLEX/X3MLE)7

then we take the FOC of the above concentrated likelihood function with respect to o2

Aln(Lc(Burr, o?ly)) ="

do? 202 2(02)? (y—XBarrp) (y=XBurp) = 0= 6315 =

n

! (y—XPBmre) (y—XBure),



3 Fixed effect model

Consider a panel data model

Yir = XitS + oy + Uiy, (1)

where ¢ = 1,...,N and ¢t = 1,...,T. The first fixed effect (FE) assumption is strict exogeneity of the
explanatory variables conditional on «; which is E(u|x;, ;) = 0. We also should mention the sequential
moment restrictions:

E(”itlxitvxitfla <o X, O[i) = 07

E(yie [Xit, Xit—1, - - - Xi1, @) = By [Xit, a5) = X8 + s

What does this restriction mean? After x;; and «; have been controlled for, no past value of x;; affect the
expected value of y;¢. This condition is more natural than the strict exogeneity assumption, which requires
conditioning on future values of x;; as well.
To derive the FE estimator, we first need to define (1) as averages:

Ui =X + i + U, (2)

where J;; = = Z;‘F:l Yit, X = 7 ZtT:l xir and U; = 7 Zthl uis. Next, we substract (2) from (1) we get

Vit — Ui = (Xt — X)) 0 + (i — o) + wie — Uy,

Tir = Xt B + Usg, (3)

where ¥;s = yit — Ui, Xit = Xi¢ — X; and Uy = uj; — 4. Similar to OLS, the FE estimator is

T
Bre =D xuki) P YD (i), (4)

i=1 t=1 =1 t=1

To get it in sample error form, we substitute (3) from (4)

T T
Bre =D %uFi) DD (R (ki B + iir)).

i=1 t=1 =1 t=1



. N T N N T N T
BFE:(ZZ X Xit) IZZ ztxzt5+(Zziitiit)_IZZ(iitﬂit)7

i=1 t=1 =1 t=1 i=1 t=1 =1 t=1

Since we know Zf\il Zthl X, %i) vazl Zthl %;,%;t = I, then
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Note from the strict exogeneity assumption of E(u;|x;, ;) = 0, it follows that u;; and u; are uncorrelated

iXit)”

with x;; and X; for t = 1,...,T. Thus, this imples X, ;s = X,,u

A N T N T
Bre—B = (Z D Fakie) DD (Ripuar),

Then we want to find

M

R 1NT( 1NT/
plim (Bpp = B) = plim (575 >0 > ki) ™ 57 D D (Rivttn),

N—o00 N—00 NT “

Then applying the weak law of large numbers and continous mapping theorem, we get

N
1 AN N
(N intxit) ' TE(Xitxit) g
i=1

intult _>E( ztult)

i=1

Then applying the Slutsky theorem,

T T
N 1 / 1 ,
plim (Bpr — B) = plim (= Y E(X; X)) ' x plim (=Y E(X;u;
gtim (e = 9) = plim (13 BE %)™ plim (3B )
If the strict exogeneity assumption of E(u;|x;, ;) = 0 holds, then E(f{;tuit) = 0 and the above term becomes

zero

plim (BFE' — 5) = 0

N—o00

If the strict exogeneity assumption does not hold, then under the sequential moment restriction, E(i;tuit) =



E((xit —%;) uit) = —E(X]u;¢) because E(x;;u;;) = 0 and so + Zthl E(X;,ui) = - Zthl E(Xjuy) = —E(X}u;).
If & Zt 1E(x %))~ is bounded, var(%;) and var(a;) are order of +, and the time-series is weakly dependent,

then the inconsistency from using fixed effects when the strict exogeneity assumption fails is of order %

4 First difference model

We can take the first difference of (1) across time T,
Yiz — ¥i1 = (Xiz — Xi1) B + wiz — w1,

YT — Yir—1 = (X7 — XiT—1) B + UiT — WiT—1,

and we can define it as

Ay = Ax S+ Auyy, (5)

where Ay = yit — Yir—1, DX = Xt — X301 and Augy = uir — uip—1- Similar to the FE estimator, the FD

estimator will be

Then to get it in sampling error form, we substitute (5) from (6)

X N T N T
Brp =" AxyAxi) ™Y (Ax, (Axa B+ Aur)),
i=1 t=2 i=1 t=2
) N T , N T , N T / N T /
Brp = Z Z Ax; ANxi) Tt Z Z Ax, Axif + Z Z Ax; ANxi) ! Z Z VAN SWANTHS
i=1 t=2 i=1 t=2 i=1 t=2 i=1 t=2

Since vazl ZtTZQ A Axy) Zfil ZZ;Z AX;, Ax; =1, then

N T

N T
Brp =B+ AxyAxi) Y Ax Augy,

i=1 t=2 i=1 t=2

Then we want to find

) N T , N T ,
plim (Brp — B) = plim (3> Axy Axi) ™' D AxyAuyy),

N—o00 N—oc0

and we first want to get it in sample moment form
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plim (Brpp — B) = plim (ﬁ Z Z AX”Ath — Z Z AxltAult

N—ro0 N—o0 i=1 t=2 T3

Then applying the weak law of large numbers and continous mapping theorem, we get

N
1 / _ / _
(N E Ax; Axi) ! 7> E(Ax; Axie) ™t

=1

)

N
1 / :
(N intﬂuit) ? E(x;, Auit),

i=1
Then applying the Slutsky theorem,
1 « 1 &
plim (Brp — B) = plim (T Z]E(Axitﬁxit))_l x plim (= ZE(AXitAUit>)a
N — 00 N —oc0 =2 N —0c0 =2
The FD estimator is consistent if E(Ax;,Aug;) = 0 then
plim (BFD - ,3) = 0,
N —o0
Recall the sequential moment restriction, which is
B(wi[Xit, Xit—1, - - -, Xi1, @) = 0,
E(yit[xit, Xit—1, - - - Xi1, o) = E(yie|xit, a;) = xie B + e,

What does this restriction mean? After x;; and «; have been controlled for, no past value of x;; affect the
expected value of y;. This condition is more natural than the strict exogeneity assumption, which requires
conditioning on future values of x;; as well. If the FD estimator is inconsistent, then the sequential moment
restriction implies

E(Ax; Auie) = E(xguir) — E(xgqwi—1) — E(xg_qui) — E(xjuie—1) = —E(xui—1) # 0,
Under stationarity condition, ]E(x;tuit,l) does not depend on t and therefore the FD estimator inconsistency

does not depend on T'. Therefore, if our choice were between FE and FD, we would tend to prefer FE because,

when 7" > 2, FE can have less bias as N — oo.



