
1 Linear regression model

We have a linear regression model in matrix form

y = Xβ + ε, ε ∼ N(0, σ2In), (1)

and from the lecture we know the OLS estimator for both β and σ2 is

β̂ = (X′X)−1X′y, (2)

σ̂2 =
(y −Xβ̂)′(y −Xβ̂)

n− k
. (3)

1.1 Conditional moment restriction

Under the OLS assumption 1.2, we assume 'Strict exogeneity' which implies a zero conditional mean

E(εi|X) = 0,

and the implication of this assumption are

E(εi) = 0,∀i = 1, ...n,

E(xjεi) = 0,

That is the unconditional mean of error is zero and all the regressors are orthogonal to all the errors. Note

weak exogeneity is

E(xiεi) = 0,

assumes that xi is just orthogonal to its comtemporaneous error εi. This is an example of an unconditional

moment restriction. Next, we can make a stronger assumption that

E(εi|xi) = 0,∀i = 1, ...n,

and this a conditional moment restriction. This conditional moment restriction also implies

E(f(xi)εi) = 0,

that is not only xi is orthogonal to εi but also any function f of xi is orthogonal to εi too. We can show this

by writing the above term using the law of total expectation E(E(X|Y )) = E(X),

E(f(xi)εi) = E(E(f(xi)εi)|xi),

Thus, since xi is non-random, we can move the f(xi) outside of the expectation operator and

E(f(xi)εi) = E(f(xi)E(εi|xi)),

and using our conditional moment restriction E(εi|xi) = 0
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E(f(xi)εi) = E(f(xi)0),

E(f(xi)εi) = 0.

1.2 Proof of consistency

We know from the �rst the sampling error β̂ − β is

β̂ − β = (X′X)−1X′ε, (4)

Now want to prove that the OLS estimator is consistent which entails

p lim
n−→∞

β̂ = β, (5)

We �rst starting writing the (4) in a sample moment form

β̂ − β = (
1

n
X′X)−1

1

n
X′ε,

From the lecture notes we can de�ne

(
1

n
X′X)−1 = S−1xx ,

1

n
X′ε = ḡn,

Thus,

β̂ − β = S−1xx ḡn,

and want to prove

p lim
n−→∞

(β̂ − β) = p lim
n−→∞

(S−1xx ḡ) = 0, (6)

The �rst step want to take in the proof, is apply Hayashi Lemma 2.3(a) (or Slutsky's theorem) to (6) , for

example if we two scalar sequences {xn} −→
p
δ and {yn} −→

p
γ then xnyn −→

p
δγ. Then

p lim
n−→∞

(β̂ − β) = p lim
n−→∞

(S−1xx )p lim
n−→∞

(ḡn),

Next, we apply the strong law of large numbers (SLLN) where the sample mean converges to the population

mean (Σ−1xx and E(gi)) and the continuous mapping theorem, that is xn −→
p

x ⇒ f(xn) −→
p

f(x), (note we

assumes that both y and X are jointly stationary and ergodic)

S−1xx −→
a.s

Σ−1xx ,⇒ S−1xx −→
p

Σ−1xx ,

ḡn −→
a.s

E(ḡi),⇒ ḡn −→
p
E(gi),

Note remember �Almost sure convergence� implies �Convergence in probability� which is what the

above two terms is showing. Thus,

p lim
n−→∞

(β̂ − β) = Σ−1xxE(gi),
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Note, under the large sample distribution assumption for OLS, we assumed that Σxx is non-singular (which

implies the inverse exist) and weak exogeneity, that is E(gi) = 0.

Therefore,

p lim
n−→∞

(β̂ − β) = Σ−1xx 0,

p lim
n−→∞

(β̂ − β) = 0⇔, β̂ −→
p
β,

Hence, the OLS estimator is consistent.

1.3 Proof of the OLS estimator is asymptotic Normality

We want to prove that

√
n(β̂ − β) −→

d
N(0,Σ−1xxSΣ−1xx ), (7)

The �rst step of this proof is we want to use the sampling error

β̂ − β = S−1xx ḡn,

Next, we multiply both sides with
√
n

√
n(β̂ − β) =

√
nS−1xx ḡn,

Note, multiplying
√
n on both sides ensure that we do not converge to a degenerate distribution, and it

converges to a well-de�ned distribution. Next, we apply the Slutsky theorem (or Hayashi Lemma 2.4) where

xn −→
d

x,x ∼ N(0,Σ), and An −→
p

A then Anxn −→
d

N(0,AΣA′). In this proof, we can assume An = S−1xx

and xn =
√
nḡn. Note, from the proof in consistency we already know that

S−1xx −→
p

Σ−1xx ,

Now, for
√
nḡn, we apply assumption 2.5 and using the central limit theorem we get

√
nḡn −→

d
N(0,S),

where S = E[gig
′
i] is the asymptotic variance of ḡn. Then applying the Slutsky theorem, we get

√
nS−1xx ḡn −→

d
N(0,Σ−1xxSΣ−1xx ),

since where assume that the Σxx is symmetric matrix, then Σ−1xx = Σ−1
′

xx . Thus, we have proved that

√
n(β̂ − β) −→

d
N(0,Σ−1xxSΣ−1xx ).

If we assume conidtional homoskedasticity and independence, then

√
nḡn −→

d
N(0,S),
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where S = E[gig
′
i] = E[ε2ixix

′
i] = E[ε2i ]E[xix

′
i] = E[E[ε2ixix

′
i|xi]] = E[xix

′
iE[ε2i |xi]] = σ2E[xix

′
i] = σ2Σxx.

Thus,

√
n(β̂ − β) −→

d
N(0,Σ−1xxσ

2ΣxxΣ−1xx ).

since ΣxxΣ−1xx = I

√
n(β̂ − β) −→

d
N(0, σ2Σ−1xx ).

Note conidtional homoskedasticity and independence implies

S = E[gig
′
i] = E[ε2ixix

′
i] = E[ε2i ]E[xix

′
i] = σ2Σxx.

2 Method of moments

The basic intuition behind the method of moments (MM) is that you want to set the population parameter

moments to the sample moments. In this section, we want to derive the OLS estimator using MM. Let's �rst

start by recappping the weak exogeneity assumption

E(xiεi) = E(xi(yi − xiβ)) = E(gi) = 0, (8)

This weak exogeneity assumption can also called the population moment condition. Next, we want to derive

the corresponding sample moment for the above equation. Let's �rst de�ne some terms

ε̂i = yi − xiβ̂0,

where ε̂i is the estimated residuals and β̂0 is an estimator of β. Using the above term, we can derive the sample

moment

ḡ(β̂0) =
1

n

n∑
i=1

gi(β̂0) =
1

n

n∑
i=1

xiε̂i =
1

n

n∑
i=1

xi(yi − xiβ̂0),

We can rewrite the above term is matrix form

ḡ(β̂0) =
1

n
X′ε̂ =

1

n
X′(y −Xβ̂0) =

1

n
X′y − 1

n
X′Xβ̂0,

Now for the MM, want to set

ḡ(β̂0) = E(gi),

Given the population moment condition we have

ḡ(β̂0) = 0,

1

n
X′y − 1

n
X′Xβ̂0 = 0,
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1

n
X′y =

1

n
X′Xβ̂0,

X′y = X′Xβ̂0,

Pre-multiply both sides by (X′X)−1,

(X′X)−1X′y = (X′X)−1X′Xβ̂0,

Since (X′X)−1(X′X) = I

β̂0 = β̂OLS = (X′X)−1X′y,

which is the OLS estimator.

2.1 With instrumental variables

With instrumental variables (IV), we have some linear regression function form of (1) but now have a n × L
matrix Z of instruments. Recapping, X is a n×K matrix of regressors. L is denoted as the no. of instruments

and K is the no. of regressors. IV is used when there are endogenity presence in the regressors. Similar to the

OLS weak exogeneity assumption, there is also a condition associated for the instruments

E(ziεi) = E(zi(yi − xiβ)) = E(gi) = 0,

Note zi can interpreted as the vector the instruments for the i observation. In a similar fashion, we can use

the estimated residuals ε̂i and an estimator of β, β̂0, to derive the corresponding sample moment for the above

term

ḡ(β̂0) =
1

n

n∑
i=1

gi(β̂0) =
1

n

n∑
i=1

ziε̂i =
1

n

n∑
i=1

zi(yi − xiβ̂0),

We can rewrite the above term is matrix form

ḡ(β̂0) =
1

n
Z′ε̂ =

1

n
Z′(y −Xβ̂0) =

1

n
Z′y − 1

n
Z′Xβ̂0,

Next, if we assume L = K, that is the no. of instruments exactly equal the no. of regressors, then we can use

MM to derive the IV estimator. First, we set the set population moment equal to sample moment

ḡ(β̂0) = E(gi),

Note, from the population moment condition, we have

ḡ(β̂0) = 0,

1

n
Z′y − 1

n
Z′Xβ̂0 = 0,
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1

n
Z′y =

1

n
Z′Xβ̂0,

Z′y = Z′Xβ̂0,

Pre-multiply both sides by (Z′X)−1,

(Z′X)−1Z′y = (Z′X)−1Z′Xβ̂0,

Since (Z′X)−1(Z′X) = I

β̂0 = β̂IV = (Z′X)−1Z′y,

which is the IV estimator.

3 GMM

When we have the no. of instruments greater than the no. of regressor L > K, we have an overidenti�ed

model and MM cannot work. We have to use Generalised method of moments (GMM). In the GMM approach,

we use this weighting matrix Wn and rewrite the moment conditions in quadratic form. Thus, we derive the

GMM estimator by

β̂GMM = argmin
β̂0

{nḡ(β̂0)′Wnḡ(β̂0)}, (9)

β̂GMM = argmin
β̂0

n(
1

n
Z′y − 1

n
Z′Xβ̂0)′Wn(

1

n
Z′y − 1

n
Z′Xβ̂0), (10)

This is similar to minimising the SSR of the linear regression model to derive the OLS estimator. Taking the

�rst-order condition respect to β̂0 and setting it equal to 0, will yield

β̂GMM = (X′ZWnZ′X)−1X′ZWnZ′y, (11)

β̂GMM = (X′ZWnZ′X)−1X′ZWnZ′(Xβ + ε), (12)

and if we substitute (1) into the above term, we get the sampling error of

β̂GMM − β = (X′ZWnZ′X)−1X′ZWnZ′ε, (13)

3.1 Proof of consistency

Next, we want to rewrite the sampling error β̂GMM − β into a sample moment form

β̂GMM − β = (
1

n
X′ZWn

1

n
Z′X)−1

1

n
X′ZWn

1

n
Z′ε, (14)

If we de�ne
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SZX =
1

n
Z′X,

ḡ =
1

n
Z′ε,

Then,

β̂GMM − β = (S
′

ZXWnSZX)−1S
′

ZXWnḡ, (15)

Similar to the OLS proof of consistency, we want to show

p lim
n−→∞

β̂GMM = β,

The �rst step of this proof is to apply Hayashi Lemma 2.3(a) (or Slutsky's theorem) that is

p lim
n−→∞

(β̂GMM − β) = p lim
n−→∞

{(S
′

ZXWnSZX)−1S
′

ZXWnḡ}, (16)

p lim
n−→∞

(β̂GMM − β) = p lim
n−→∞

((S
′

ZXWnSZX)−1)× p lim
n−→∞

(S
′

ZX)× p lim
n−→∞

(Wn)× p lim
n−→∞

(ḡ), (17)

Next, we apply the strong law of large numbers (SLLN) where the sample mean converges to the population

mean and the continuous mapping theorem,

S
′

ZX −→
a.s

Σ
′

ZX ,⇒ S
′

ZX −→
p

Σ
′

ZX ,

ḡn −→
a.s

E(ḡi),⇒ ḡn −→
p
E(gi),

Wn −→
a.s

W,⇒Wn −→
p

W,

Note we also have a weak exogeneity assumption, that is E(gi) = 0. Therefore,

p lim
n−→∞

(β̂GMM − β) = (Σ
′

ZXWΣZX)−1 × Σ
′

ZX ×W × 0, (18)

p lim
n−→∞

(β̂GMM − β) = 0,⇔, β̂GMM −→
p
β,

Therefore, the GMM estimator is consistent.

3.2 Proof the GMM estimator asymptotic Normality

We want to prove that

√
n(β̂ − β) −→

d
N(0, (Σ

′

ZXWΣZX)−1(Σ
′

ZXWSWΣZX)(Σ
′

ZXWΣZX)−1), (19)

The �rst step of this proof is we want to use the sampling error
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β̂GMM − β = (S
′

ZXWnSZX)−1S
′

ZXWnḡ, (20)

Next, we multiply both sides with
√
n

√
n(β̂GMM − β) =

√
n(S

′

ZXWnSZX)−1S
′

ZXWnḡn, (21)

Note, multiplying
√
n on both sides ensure that we do not converge to a degenerate distribution, and it

converges to a well-de�ned distribution. Next, we apply the Slutsky theorem (or Hayashi Lemma 2.4) where

xn −→
d

x,x ∼ N(0,Σ), and An −→
p

A then Anxn −→
d

N(0,AΣA′). In this proof, we can assume An =

(S
′

ZXWnSZX)−1S
′

ZXWn and xn =
√
nḡn. Note, from the proof in consistency we already know that

S
′

ZX −→
a.s

ΣZX ,⇒ S
′

ZX −→
p

Σ
′

ZX ,

Wn −→
a.s

W,⇒Wn −→
p

W,

Therefore A = (Σ
′

ZXWΣZX)−1Σ
′

ZXW and A′ = WΣZX(Σ
′

ZXWΣZX)−1. Similar to the OLS proof, for
√
nḡn, we apply assumption 35 and using the central limit theorem we get

√
nḡn −→

d
N(0,S),

where S = E[gig
′
i] is the asymptotic variance of ḡn. Thus, applying the Slutsky theorem, we get

√
n(β̂GMM − β) −→

d
N(0, (Σ

′

ZXWΣZX)−1Σ
′

ZXWSWΣZX(Σ
′

ZXWΣZX)−1),

Thus, we have proved that the GMM estimator is asymptotic normal.

4 Other

4.1 OLS

Consider a linear regression model with no constant

yi = xiβ + εi, (22)

and the OLS estimator is

β̂ =

∑
i xiyi∑
i x

2
i

, (23)

We want to get the above equation in sample error form so we subsititute (22) into (23)

β̂ =

∑
i xi(xiβ + εi)∑

i x
2
i

,

β̂ =

∑
i x

2
iβ∑

i x
2
i

+

∑
i xiεi∑
i x

2
i

,
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β̂ = β +

∑
i xiεi∑
i x

2
i

,

β̂ − β =

∑
i xiεi∑
i x

2
i

,

Next, we want to get the above term in sample moment form (similar to section 1.2 or the OLS proof of

consistency)

β̂ − β =
1
n

∑
i xiεi

1
n

∑
i x

2
i

,

We want to �nd

p lim
n−→∞

(β̂ − β) = p lim
n−→∞

(
1
n

∑
i xiεi

1
n

∑
i x

2
i

),

Firstly, we can apply Hayashi Lemma 2.3(a) (or Slutsky's theorem) that is

p lim
n−→∞

(β̂ − β) =
p limn−→∞( 1

n

∑
i xiεi)

p limn−→∞( 1
n

∑
i x

2
i )
,

Next, we apply the strong law of large numbers (SLLN) where the sample mean converges to the population

mean and the continuous mapping theorem (note we assumes that both y and X are jointly stationary and

ergodic)

(
1

n

∑
i

x2i )
−1 −→

a.s
E(x2i )

−1,⇒ (
1

n

∑
i

x2i )
−1 −→

p
E(x2i )

−1,

1

n

∑
i

xiεi −→
a.s

E(xiεi),⇒
1

n

∑
i

xiεi −→
p
E(xiεi),

Note remember �Almost sure convergence� implies �Convergence in probability� which is what the

above two terms is showing.

Thus,

p lim
n−→∞

(β̂ − β) =
E(xiεi)

E(x2i )
, (24)

However, here we assumed that E(xiεi) 6= 0 which does not imply p limn−→∞(β̂ − β) = 0 . Note the terms in

(24) are used to the calculate the covariance (cov(xiεi) = E(xiεi) − E(xi)E(εi)) and the variance(var(xi) =

E(x2i )− E(xi)
2), therefore (24) can be loosely written as

p lim
n−→∞

(β̂ − β) =
cov(xiεi)

var(xi)
, (25)

Since the denominator is always positive, the sign of the inconsistency in the OLS estimator is given by the

numerator. If the regressor is positively correlated with the error, the OLS estimator is biased upwards; if the

regressor is negatively correlated with the error, the OLS estimator is biased downwards.
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4.2 IV

Consider a linear regression model with no constant

yi = xiβ + εi, (26)

and the IV estimator is

β̂iv =

∑
i ziyi∑
i zixi

, (27)

We want to get the above equation in sample error form so we subsititute (26) into (27)

β̂iv =

∑
i zi(xiβ + εi)∑

i zixi
,

β̂iv =

∑
i zixiβ∑
i zixi

+

∑
i ziεi∑
i zixi

,

β̂iv = β +

∑
i ziεi∑
i zixi

,

β̂iv − β =

∑
i ziεi∑
i zixi

,

Next, we want to get the above term in sample moment form (similar to section 1.2 or the OLS proof of

consistency)

β̂iv − β =
1
n

∑
i ziεi

1
n

∑
i zixi

,

We want to �nd

p lim
n−→∞

(β̂iv − β) = p lim
n−→∞

(
1
n

∑
i ziεi

1
n

∑
i zixi

),

Firstly, we can apply Hayashi Lemma 2.3(a) (or Slutsky's theorem) that is

p lim
n−→∞

(β̂iv − β) =
p limn−→∞( 1

n

∑
i ziεi)

p limn−→∞( 1
n

∑
i zixi)

,

Next, we apply the strong law of large numbers (SLLN) where the sample mean converges to the population

mean and the continuous mapping theorem (note we assumes that both y, X and Z are jointly stationary and

ergodic)

(
1

n

∑
i

zixi)
−1 −→

a.s
E(zixi)

−1,⇒ (
1

n

∑
i

zixi)
−1 −→

p
E(zixi)

−1,

1

n

∑
i

ziεi −→
a.s

E(ziεi),⇒
1

n

∑
i

ziεi −→
p
E(ziεi),
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Note remember �Almost sure convergence� implies �Convergence in probability� which is what the

above two terms is showing.

Thus,

p lim
n−→∞

(β̂iv − β) =
E(ziεi)

E(zixi)
, (28)

However, here we assumed that E(ziεi) 6= 0 which does not imply p limn−→∞(β̂iv − β) = 0 . Note the

terms in (28) are used to the calculate the covariance (cov(ziεi) = E(ziεi) − E(zi)E(εi) and cov(zixi) =

E(zixi)− E(zi)E(xi)), therefore (28) can be loosely written as

p lim
n−→∞

(β̂iv − β) =
cov(ziεi)

cov(zixi)
, (29)

Either way, it is the covariance of the instrument and the error divided by the covariance of the instrument

and the regressor. Now the sign depends on both the numerator and denominator. If the instrument is

positively correlated with the regressor, the denominator is positive, and the sign of the inconsistency in the

IV estimator is given by sign of the correlation between the instrument and the error (positive �upward bias,

negative�downward bias). If the instrument is negatively correlated with the regressor, the denonminator is

negative and the sign of the inconsistency in the IV estimator is the opposite of the sign of the correlation

between the instrument and the error.

5 Heteroskedascity and autocorrelation

Assume we have time-series data and we believe there is both heteroskedascity and serial correlation presence

in the data. A non-parametric approach, that is we does not assume any speci�c functional form regarding

the heteroskedascity and the serial correlation, is to use the heteroskedastic and autocorrelation-consistent

covariance (HAC) estimator S̄HAC based on lecture 7. This HAC estimator is a consistent estimator of S, which

means we are able to construct the asymptotic variance of β̂ or ˆAVAR(β̂) that is robust to heteroskedasticity

and autocorrelation.

For the parameteric approach, we could assume an ARMA representation that explicitly takes into consider-

ation both heteroskedascity and serial correlation, for instance ARMA(2,2)

yt = c+ φ1yt−1 + φ2yt−2 + θ2εt−2 + θ1εt−1 + εt, εt ∼ N(0, σ2
t ), (30)

The serial correlation comes via θ2εt−2 + θ1εt−1 and the heteroskedascity comes via σ2
t (that is the variance

varies across time periods). There are two ways to estimate (30), either the Frequentist or the Bayesian

approach. In the frequentist approach, a standard way to estimate an ARMA model is through maximum

likelihood (ML). ML is a method of estimating the parameters of a probability distribution by maximising a

likelihood function, so that under the assumed statistical model the observed data is most probable. However,

there can be issues with ML, for instance a model's likelihood function could contain various local maximums,

which implies that the starting value of the optimisation of the ML is very important. It is for this reason,

majority of the ARMA models in the macroeconometrics literature are now estimated via a Bayesian approach

as it is more �exible compared to standard frequentist approach. For example, a good Bayesian paper on

ARMA models �Stochastic volatility models with ARMA innovations: An application to G7 in�ation� is by

Zhang et al. (2020) that is published in the International Journal of Forecasting.
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