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1 Linear regression model

We have a linear regression in matrix form

y = Xβ + ε, ε ∼ N(0, σ2In), (1)

and from the lecture we know the OLS estimator for both β and σ2 is

β̂ = (X′X)−1X′y, (2)

σ̂2 =
(y −Xβ̂)′(y −Xβ̂)

n− k
. (3)

How do we get the projection matrix? First, we can see that the �tted values are

ŷ = Xβ̂, (4)

and we can substitute (2) into (4) then it becomes

ŷ = X(X′X)−1X′y

where the projection matrix is P = X(X′X)−1X′.

The annihilation matrix or the residual maker can be derived through the residuals

e = y −Xβ̂, (5)

and we can substitute (2) into (5)

e = y −X(X′X)−1X′y,

e = (I−X(X′X)−1X′)y,

e = My,
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where M = (I−X(X′X)−1X′) can be seen as a matrix that makes the residuals out of y. We want to show

for both the projection and annihilation matrix they are symmetric and idempotent. Let de�ne a matrix A

then the matrix A is symmetric if

A = AT ,

and A is idempotent if

A = A2

Therefore, let's prove M and P are symmetric

P′ = (X(X′X)−1X′)′

P′ = X(X′X)−1X′

Note X′X is always symmetric. A similar logic can be applied to the M matrix. To show that M is idempotent

then

M2 = (I−X(X′X)−1X′)(I−X(X′X)−1X′)

M2 = I2 − 2X(X′X)−1X′ + X(X′X)−1X′X(X′X)−1X′

M2 = I2 − 2X(X′X)−1X′ + X(X′X)−1X′

M2 = I−X(X′X)−1X′

M2 = M.

A similar logic can be applied to P.

Next, we want to show that the MSE(θ̂) = V ar(θ̂) + bias(θ̂)2. Let's assume that we know E(θ̂) = θ̄. Thus,

the MSE can be written in the form

MSE(θ̂) = E[(θ̂ − θ)2],

Next we can add and subtract the θ̄ from the term

MSE(θ̂) = E[(θ̂ − θ̄ + θ̄ + θ)2],

MSE(θ̂) = E[(θ̂ − θ̄)2 − 2(θ̄ − θ)(θ̂ − θ̄) + (θ̄ − θ)2)],

2



We can use the linear expectation operator rule

MSE(θ̂) = E[(θ̂ − θ̄)2]− 2E[(θ̄ − θ)(θ̂ − θ̄)] + E[(θ̄ − θ)2)],

Note if X is a random variable then the variance is var(X) = E(X−E(X))2. Therefore E[(θ̂− θ̄)2] = V ar(θ̂).

Note here E(θ̂)− θ̄ = 0 (from the above assumption), thus the term 2E[(θ̄ − θ)(θ̂ − θ̄)] = 0. As a result,

MSE(θ̂) = V ar(θ̂) + E[(θ̄ − θ)2)],

By de�nition E[(θ̄ − θ)] is de�ned as the bias for θ̂. Thus,

MSE(θ̂) = V ar(θ̂) + bias(θ̂)2.

2 OLS estimator

From (2) we know the OLS estimator for β is

β̂ = (X′X)−1X′y,

We can substitute (1) into (2)

β̂ = (X′X)−1X′(Xβ + ε),

β̂ = (X′X)−1X′Xβ + (X′X)−1X′ε,

Since (X′X)−1X′X = I, then

β̂ = β + (X′X)−1X′ε,

Thus the sampling error is

β̂ − β = (X′X)−1X′ε.

For the OLS estimator β to be unbiased, we want to show E(β̂ − β|X) = 0. Thus,

E(β̂ − β|X) = E((X′X)−1X′ε|X),

Since the matrix X is known, the only random variable in the above term is ε and from (1) we know that it

is normally distributed with a mean equal to zero, E(ε|X) = 0

E(β̂ − β|X) = (X′X)−1X′E(ε|X),

Thus,
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E(β̂ − β|X) = (X′X)−1X′0,

E(β̂ − β|X) = 0.

We now want to �nd the variance of the OLS estimator β, var(β̂), from (2)

var(β̂) = var((X′X)−1X′y),

var(β̂) = (X′X)−1X′var(y|X),

Note assume z ∼ N(0,Ω) and A is a known matrix. Then the variance of V (Az) = AV (z)A′ = AΩA′. You

can see in the above term that A is (X′X)−1X′. Therefore, we know ((X′X)−1X′)′ = X(X′X)−1. Remember

X′X is a symmetric matrix. Thus,

var(β̂) = (X′X)−1X′var(y|X)X(X′X)−1,

From (1) we know var(y|X) = σ2I. Thus,

var(β̂) = (X′X)−1X′σ2IX(X′X)−1,

Since σ2 is scalar, we can move it to the front

var(β̂) = σ2(X′X)−1X′X(X′X)−1,

Since, (X′X)−1X′X = I, then

var(β̂) = σ2(X′X)−1.

3 GLS estimator

If we violate the assumption 1.4, that is the conditional homoskedasticity and independence, the linear regres-

sion model becomes

y = Xβ + ε, ε ∼ N(0, σ2V), (6)

whereV is a known, symmetric and positive de�nite matrix. The inverse ofV−1 also exist and can decomposed

as V−1 = C′C. We can premultiply (6) with C

Cy = CXβ + Cε, ε ∼ N(0, σ2),
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ỹ = X̃β + ε̃, ε̃ ∼ N(0, σ2CC′),

where ỹ = Cy, X̃ = CX and V = CC′. Note (V−1)−1 = (C′C)−1 = (V−
1
2
′
V−

1
2 )−1 = V

1
2V

1
2
′

= CC′ = V.

Therefore the GLS estimator for β is

β̂GLS = (X′V−1X)−1X′V−1y, (7)

What is sampling error β̂GLS − β? We can substitute (6) into (7), therefore

β̂GLS = (X′V−1X)−1X′V−1(Xβ + ε),

β̂GLS = (X′V−1X)−1X′V−1Xβ + (X′V−1X)−1X′V−1ε,

since (X′V−1X)−1X′V−1X = I,then

β̂GLS = β + (X′V−1X)−1X′V−1ε,

β̂GLS − β = (X′V−1X)−1X′V−1ε.

Next, we want to show that β̂GLS is an unbiased estimator which implies E(β̂GLS |X) = β. Therefore we want

to show E(β̂GLS |X)−β = 0, and E(β̂GLS |X)−β can be equivalent to E(β̂GLS −β|X). Given that we already

know β̂GLS − β, then

E(β̂GLS |X)− β = E(β̂GLS − β|X),

E(β̂GLS |X)− β = E((X′V−1X)−1X′V−1ε|X),

Note that X and V are known matrices, they are not random variables. The only random variable de�ned in

this term is ε and we know from the normality assumption that E(ε|X) = 0. Therefore,

E(β̂GLS |X)− β = (X′V−1X)−1X′V−1E(ε|X),

E(β̂GLS |X)− β = (X′V−1X)−1X′V−10,

E(β̂GLS |X)− β = 0 ⇐⇒ E(β̂GLS |X) = β.

Next, we want to show the variance of the V (β̂GLS |X) = σ2(X′V−1X)−1. Using (7) we want to �nd

V (β̂GLS |X) = V ((X′V−1X)−1X′V−1y),
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V (β̂GLS |X) = ((X′V−1X)−1X′V−1V (y|X)),

Note: assume z ∼ N(0,Ω) and A is a known matrix. Then the variance of V (Az) = AV (z)A′ = AΩA′.

You can see in the above term that A is (X′V−1X)−1X′V−1. Therefore, we know ((X′V−1X)−1X′V−1)′ =

V−1X(X′V−1X)−1. Remember both Vand X′X are known and symmetric matrices. Thus,

V (β̂GLS |X) = ((X′V−1X)−1X′V−1V (y|X)V−1X(X′V−1X)−1),

From (6) we know V (y|X) = σ2V,

V (β̂GLS |X) = ((X′V−1X)−1X′V−1σ2VV−1X(X′V−1X)−1),

since VV−1 = I,

V (β̂GLS |X) = σ2((X′V−1X)−1X′V−1X(X′V−1X)−1),

and X′V−1X(X′V−1X)−1 = I, then we get

V (β̂GLS |X) = σ2((X′V−1X)−1.

4 FGLS

In GLS, the matrix V is assumed be known but in practice usually Vis unknown and infeasible. As a result,

an estimator of V, that is V̂, has be undertaken. When estimation of V̂ is involved then it becomes FGLS.

Essentially the FGLS is a two step estimation, that is �rst estimate V̂ and then plug this V̂ back into (6) and

compute (7). However, the issue now is that V̂ becomes a random variable as it is typically a function of the

data. Therefore, the standard proof of unbiasedness and the variance described above for the GLS estimator

cannot be implemented for the FGLS estimator. For example, in the above section we showed that

E(β̂GLS |X)− β = (X′V−1X)−1X′V−1E(ε|X),

However, for the FGLS estimator this is not true since V̂ is a random variable.

E(β̂FGLS |X)− β 6= (X′V̂−1X)−1X′V̂−1E(ε|X),

Note before in the GLS, the matrix V was assumed to be known and not a random variable. Similarly, the

variance of the FGLS estimator does not hold too

V (β̂FGLS |X) 6= (X′V̂−1X)−1X′V̂−1V (y|X)).
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