
1 GMM

When we have the no. of instruments greater than the no. of regressor L > K, we have an overidenti�ed

model and MM cannot work. We have to use Generalised method of moments (GMM). In the GMM approach,

we use this weighting matrix Wn and rewrite the moment conditions in quadratic form. Thus, we derive the

GMM estimator by

β̂GMM = argmin
β̂0

{Jn(β̂0)}, (1)

β̂GMM = argmin
β̂0

{nḡ(β̂0)′Wnḡ(β̂0)}, (2)

Note here Wn is a L × L symmetric and positive de�nite matrix. This matrix implicitly determines sample

moments are important. For example, let's consider a very simple 2 moment condition case where

ḡ(β̂0) =

 ga

gb

 ,Wn =

 1 0

0 1

 ,
This implies ḡ(β̂0)′Wnḡ(β̂0) to be

g2a + g2b

which suggest both sample moment condition are equally important. However, if

Wn =

 2 0

0 1


Then ḡ(β̂0)′Wnḡ(β̂0) becomes

2g2a + g2b

which suggest the sample moment condition ga to be more important than gb.

Now, let's expand (2) and we know from the previously tutorials ḡ(β̂0) = 1
nZ
′y − 1

nZ
′Xβ̂0 and then

β̂GMM = argmin
β̂0

n(
1

n
Z′y − 1

n
Z′Xβ̂0)′Wn(

1

n
Z′y − 1

n
Z′Xβ̂0), (3)

This is similar to minimising the SSR of the linear regression model to derive the OLS estimator. Taking the
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�rst-order condition respect to β̂0 and setting it equal to 0,

∂

∂β̂0
n(

1

n
Z′y − 1

n
Z′Xβ̂0)′Wn(

1

n
Z′y − 1

n
Z′Xβ̂0) = 0,

∂

∂β̂0
(Z′y − Z′Xβ̂0)′Wn(Z′y − Z′Xβ̂0) = 0

∂

∂β̂0
(−y′Z′WnZ

′Xβ̂0 − β̂0X′ZWnZ
′y + β̂

′

0X
′ZWnZ

′Xβ̂0) = 0

We can use this use rule that v = Au is equivalent to v = u′A, therefore

∂

∂β̂0
(−2y′Z′WnZ

′Xβ̂0 + β̂
′

0X
′ZWnZ

′Xβ̂0) = 0

Then we apply this next rule, ψ(x) = xAx′ and the ∂ψ(x)
x = x′(A + A′) and if A is a symmetric matrix then

∂ψ(x)
x = 2x′A

(−2y′Z′WnZ
′X + 2β̂

′

0X
′ZWnZ

′X) = 0

β̂
′

0X
′ZWnZ

′X = y′Z′WnZ
′X

Take transpose of both sides

X′ZWnZ
′Xβ̂0 = X′ZWnZ

′y,

Then pre-multiply both sides by (X′ZWnZ
′X)−1

(X′ZWnZ
′X)−1X′ZWnZ

′Xβ̂0 = (X′ZWnZ
′X)−1X′ZWnZ

′y,

Since (X′ZWnZ
′X)−1X′ZWnZ

′X = I, then

β̂0 = β̂GMM = (X′ZWnZ
′X)−1X′ZWnZ

′y, (4)
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1.1 Two Step E�cient GMM

According to Hansen (1982) an the e�cient GMM is achieved when the optimal weighting matrix Wn is set

to be S−1 which is the inverse of the asymptotic variance of ḡn. This guarantees the GMM estimator have a

minimum asymptotic variance. An example of a two step e�cient GMM would be to choose an initial weighting

matrix, e.g W1 = I or W1 = ( 1
nX
′X)−1, and �nd a consistent but ine�cient �rst step GMM estimator

β̂1 = argmin
β̂

{nḡ(β̂)′W1ḡ(β̂)},

From this GMM estimator of β̂1 we can derive the optimal weighting matrix Ŵ2. Then we can �nd an e�cient

estimator using this optimal weight matrix

β̂2 = argmin
β̂

{nḡ(β̂)′Ŵ2ḡ(β̂)},

Hence, the β̂2 is the two step e�cient GMM estimator. Also, e�ciency is obtained if we set S to be

1. ŜHC the asymptotic estimator of the covariance in the presence of arbitrary heteroskedasticity.

2. ŜCR the asymptotic estimator of the covariance in the presence of arbitrary heteroskedasticity and

within-cluster correlation.

3. ŜHAC the asymptotic estimator of the covariance in the presence of arbitrary heteroskedasticity and

serial correlation.

and substitute it back into (4) of the GMM estimator.

1.2 Non-linear GMM

Similar approach to the standard GMM but now ḡ(β̂0) is nonlinear function of data and parameters. For

example ḡ(β̂0) = 1
n

∑n
i=1 xi(yi − (xi + xi−1)2β̂0). See attached notes about it.

2 Anderson-Rubin-test

Let's consider a linear model of

y = X1β1 + β2x2 + ε, (5)

x2 = X1Π1 + Z2Π1 + v,
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where Z1 = X1 is your included instruments or exgenous regressor and x2 is the endogenous regressor. The

Anderson-Rubin (AR) test can be specify as

H0 : β2 = β̄2 and E(ziεi) = 0,

H1 : β2 6= β̄2 or E(ziεi) 6= 0

If β̄2 is close to the true β and weak exogeneity holds E(ziεi) = 0, we won't be able to reject the null hyopthesis.

Another way to conduct this test is subtract both sides by β̄2x2 from (5)

ỹ = X1β1 + (β2 − β̄2)x2 + ε,

where ỹ = y − β̄2x2 and we then substitute x2 = X1Π1 + Z2Π1 + v into the above equations

ỹ = X1β1 + (β2 − β̄2)(X1Π1 + Z2Π1 + v) + ε,

Then simplifying

ỹ = Z1θ1 + Z2θ2 + u,

where θ1 = β1 + (β2 − β̄2)Π1, θ2 = (β2 − β̄2)Π2, and u = ε+ (β2 − β̄2)v. Then the equivalent AR test can be

conducted by

H0 : θ2 = 0 and E(ziεi) = 0,

H1 : θ2 6= 0 or E(ziεi) 6= 0

Here if θ2 = 0 this implies β2 − β̄2 = 0. Note here if β2 is weakly identi�ed, Π2 is small. This means θ2 will

be small, which means we are less likely to reject the null hypothesis and more likely to believe that β2 = β̄2.

The weaker the identi�cation, the wider the range of possible values of β2 we will fail to reject.

4



3 Consider an OLS estimation in which the regressor of interest is

treated as exogenous.

From the previous tutorial, we know that the OLS estimator is consistent if E(gi) = E[xiεi] = 0, if the weak

exogeneity assumption holds

p lim
n−→∞

(β̂ − β) = Σ−1xxE(gi),

p lim
n−→∞

(β̂ − β) = 0,

However, when the weak exogeneity assumption E(gi) = E[xiεi] 6= 0 (this implies endogeneity in the regressors

and the errors) does not hold

p lim
n−→∞

(β̂ − β) 6= 0,

Then the OLS estimator is biased. According to tutorial 2, Q8, the sign of the biasedness is determined by

p lim
n−→∞

(β̂ − β) =
cov[xiεi]

var[xi]
, (6)

Since the denominator is always positive, the sign of the inconsistency in the OLS estimator is given by the

numerator. If the regressor is positively correlated with the error, the OLS estimator is biased upwards; if the

regressor is negatively correlated with the error, the OLS estimator is biased downwards.

3.1 Huassman test

We can use the Huassman test to test for endogeneity. The basic understanding of Huasman test is that

consider we have two estimators, β̂A and β̂AB , from a linear model. Then the hypothesis test will be

H0 : bothβ̂A and β̂AB are consistent estimators

H1 : β̂Ais a consistent estimator but not β̂AB

Then the Huasman test statistics is calculated as
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H = n(β̂A − β̂AB)′(V(β̂A)−V(β̂AB))−1(β̂A − β̂AB)

where V(β̂A) and V(β̂AB) are asymptotic variance of the estimator and H −→
d
χ2(ν) with a degree of freedom

parameter ν.

3.2 GMM distance test

Another test we could consider is the GMM distance test that calculates test statistic based on the di�erence

between the values of two minimized e�cient GMM objective functions. For example

1. β̂1 = argmin
β̂A

Jn(β̂A) estimate a GMM estimator where we treat the regressor of interest xi as exogenous

that is the weak exogeneity assumption hold E[xiεi] = 0.

2. β̂2 = argmin
ˆβAB

Jn(β̂AB) estimate a GMM estimator where we treat the regressor of interest xi as endogenous

that is the weak exogeneity assumption does not hold E[xiεi] 6= 0.

3. The calculate the di�erence D = Jn(β̂AB)− Jn(β̂A) between the two functions. If this is large, you can

conclude that the regressors are actually endogenous (or something else is wrong).

For the GMM distance test, you have to assume a well speci�ed IV/GMM estimation in which xi is treated

endogenous. Thus, this means at least one instrument zi must satisfy the weak exogeneity assumption E[ziεi] =

0 and zi is correlated with xi (rank condition).

4 Consider an exactly-identied IV estimation in which the regressor

of interest is treated as endogenous.

Under assumption 3.4, it assumes the L ×K matrix of ΣZX = E[zixi] is full column rank. This full column

rank means that each of the columns of ΣZX are linearly independent. If ΣZX is not full column rank then

this implies that a column in ΣZX can determined by a linear combination of the other columns in ΣZX which

implies some sort of colinearity exist between the columns. This rank assumption is important to ensure

consistency for the β̂GMM estimator. Recall from tutorial 2, our proof of consistency for the GMM estimator:

p lim
n−→∞

(β̂GMM − β) = p lim
n−→∞

((S
′

ZXWnSZX)−1)× p lim
n−→∞

(S
′

ZX)× p lim
n−→∞

(Wn)× p lim
n−→∞

(ḡ), (7)

Next, we apply the strong law of large numbers (SLLN) where the sample mean converges to the population

mean and the continuous mapping theorem,
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S
′

ZX −→
a.s

Σ
′

ZX ,⇒ S
′

ZX −→
p

Σ
′

ZX ,

ḡn −→
a.s

E(ḡi),⇒ ḡn −→
p
E(gi),

Wn −→
a.s

W,⇒Wn −→
p

W,

Note we also have a weak exogeneity assumption, that is E(gi) = 0. Note that E(gi) = E(ziεi) = 0 has to

hold to ensure consistency in the GMM estimator. This cannot be test since we assume the model L = K is

identi�ed. Therefore,

p lim
n−→∞

(β̂GMM − β) = (Σ
′

ZXWΣZX)−1 × Σ
′

ZX ×W × 0, (8)

p lim
n−→∞

(β̂GMM − β) = 0,⇔, β̂GMM −→
p
β,

Let's focus on the term (Σ
′

ZXWΣZX)−1on (8). This term will give us a K ×K matrix. However if ΣZX is

not full rank, that is rank(ΣZX) < K (underidenti�ed), then this also implies rank(Σ
′

ZXWΣZX) < K. If the

matrix (Σ
′

ZXWΣZX) is not full rank, then this matrix is a singular matrix which means is not invertible or

the inverse does not exist (Recall matrix is invertible if it is non-singular). Thus, the proof in (8) fails since

ΣZX is not full rank.

Let's consider a very simple two variables linear model with no constant

yi = x1,iβ1 + x2,iβ2 + εi,

and let's assume x2,i is the endogenous regressor. We can z1,i = x1,i is the �included instruments� and z2,i is

the �excluded instruments�. What we want to do next is run an OLS on

x2,i = z1,iδ1 + z2,iδ2 + vi,

Then we test for signi�cance δ2 whether it is zero or not. If we �nd that statistically δ2 6= 0 then this implies

the rank condition is satis�ed. For a multivariate case

X2 = Z∆ + v = Z1∆1 + Z2∆2 + v,
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whereX2 is a vector of all endogenous regressors in the linear model, Z1 is a matrix that contains all the

�included instruments� and Z2 is a matrix that contains all the �excluded instruments�. Then if rank(∆) = K

and rank(∆2) = K2 (K2 is no. of excluded instruments) then model is identi�ed and the rank condition is

satis�ed. To test whether a regressor is exogenous, we want to have statistical evidence that δ2 = 0, this

implies that x2,i are linearly independent compared to the other regressors.

4.1 Testing for the weak exogeneity assumption

We know from our proof of consistency for the IV estimator to be

p lim
n−→∞

(β̂iv − β) =
cov(zi, εi)

cov(zi, xi)
, (9)

Thus, assuming a large sample case and the model is exactly identi�ed (L = K), then we have

β̂iv = β +
cov(zi, εi)

cov(zi, xi)
=
cov(zi, yi)

cov(zi, xi)
,

Note if yi = xiβ+ εi, then cov(zi, yi) = cov(zi, yi− xiβ) = cov(zi, yi) + βcov(zi, xi). Next, let's vi = yi− xiβ̂iv

to be the IV residuals, and vi = εi if zi is a valid instrument. Next, we want �nd what is cov(zi, vi)?

cov(zi, vi) = cov(zi, yi − xiβ̂iv) = cov(zi, yi)− β̂ivcov(zi, xi),

We can then substitute β̂iv = cov(zi,yi)
cov(zi,xi)

into the above equation

cov(zi, vi) = cov(zi, yi)−
cov(zi, yi)

cov(zi, xi)
cov(zi, xi),

cov(zi, vi) = cov(zi, yi)− cov(zi, yi) = 0,

Therefore, in exactly identi�ed model, zi is always perfectly uncorrelated with the IV residuals by construction

regardless of whether the weak exogeneity assumption holds or not. Therefore, the weak exogeneity assumption

cannot be tested when no. of instruments is equal to the no. of regressor. However, if we have two instruments

L = 2 and K = 1 regressor, then the IV/GMM estimators will be

ˆ
β
(1)
iv = β +

cov(z1, εi)

cov(z1, xi)
,
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ˆ
β
(2)
iv = β +

cov(z2, εi)

cov(z2, xi)
,

Then

ˆ
β
(1)
iv −

ˆ
β
(2)
iv =

cov(z1, εi)

cov(z1, xi)
− cov(z2, εi)

cov(z2, xi)
,

where
ˆ
β
(1)
iv −

ˆ
β
(2)
iv = 0 implies both cov(z1, εi) = cov(z2, εi) = 0 and z1& z2 are valid instruments. However,

ˆ
β
(1)
iv −

ˆ
β
(2)
iv 6= 0, then this implies at least one instrument, either z1 or z2, must be invalid. Therefore, we can

test the weak exogeneity assumption case when we have more instruments than regressors.

4.2 Using IV when in fact the regressor could be treated as exogenous and you

could instead use OLS.

If the regressor is actually exogenous but you use IV, the consequence is that you are using an ine�cent

estimator. If both OLS and IV are consistent, the OLS estimator is more e¢ cient (more precise, smaller

variance) and hence preferable.

var(β̂OLS) = σ2(X′X)−1.

var(β̂IV ) = σ2(Z′X)−1Z′Z(Z′X)−1.

If X contains all exogenous regressor, then you can see why var(β̂OLS) will have a lower variance than the

var(β̂IV ) since it has less terms.

4.3 Comparison

In section 2, the researcher starts with OLS which means that the researcher believes that the regressors are

exogenous and then no valid instruments. But in the section 3, the researcher starts IV which means that the

researcher has a priori believe that some of the regressors are endogenous and they have some valid instrument

to correct for this issue.
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5 Sargan�Hansen test

The Sargan�Hansen (HS) test is a test for over-identifying restrictions that is L > K. Recall a feasible GMM

estimator is when we set optimal weighting matrix Wn to be S−1 which is the inverse of the asymptotic

variance of ḡn. Thus in notation

β̂EGMM = argmin
β̂0

{Jn(β̂0)},

where Jn(β̂0) = nḡ(β̂0)′S−1ḡ(β̂0) and the HS test statistic is compute by the value of the minimised GMM

objective function Jn(β̂EGMM ). This

Jn(β̂EGMM ) = nḡ(β̂EGMM )′S−1ḡ(β̂EGMM ) −→
d
χ2(L−K)

where ḡ(β̂EGMM ) = 1
n

∑n
i=1 ziε̂i. A large HS test statistics implies some part of the model is wrong. This

indicates a failure of the orthogonality conditions, i.e., some of the variables we are treating as exogenous are

actually endogenous (correlated with the disturbance). The opposite is the case with a small HS test statistics.

The reasons for large HS test

1. The model is correctly speci�ed but the excluded instruments zi are not exogenous and correlated with

error.

2. The model is not correctly speci�ed but some of the excluded instruments zi should be included as the

regressors.

3. The entire model is wrong.

4. The estimator Ŝ for S could be inconsistent.
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