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1 Question 1

The OLS sampling error is, in data matrix form,
(
β̂OLS − β

)
= (X′X)

−1
X′ε. Rewrite this in sample

moment form. Use it to show that the OLS estimator β̂oLS is consistent.

Answer:

We know from the first the sampling error β̂ − β is

β̂ − β = (X′X)
−1

X′ε (1)

We first starting writing the in a sample moment form

β̂ − β =

(
1

n
X′X

)−1
1

n
X′ε (2)

From the lecture notes we can define

1

n
X′X =

1

n

n∑
i=1

xix
′
i = Sxx,

(
1

n
X′X

)−1
= S−1xx

1

n
X′ε = gn

Thus, the OLS sampling error, in sample moment form, is

β̂ − β = S−1xxgn

Now want to prove that the OLS estimator is consistent which entails

p lim
n−→∞

(β̂ − β) = 0 (3)

That is:

p lim
n−→∞

(S−1xxgn) = 0 (4)
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The first step is apply Hayashi Lemma 2.3(a) (or Slutsky’s theorem), for example if we have two scalar

sequences {xn} −→
p
δ and {yn} −→

p
γ, then xnyn −→

p
δγ. Using Slutsky’s theorem, we can get:

p lim
n−→∞

(β̂ − β) = p lim
n−→∞

(S−1xxgn) = p lim
n−→∞

(
S−1xx

)
p lim
n−→∞

(gn)

Next, we apply the strong law of large numbers (SLLN) where the sample mean converges to the

population mean
(
Σ−1xx and E (gi)) and the continuous mapping theorem, that is xn −→

p
x⇒ f (xn) −→

p

f(x), (note we assumes that both y and X are jointly stationary and ergodic)

S−1xx −→
a.s

Σ−1xx ,⇒ S−1xx −→
p

Σ−1xx

gn −→
a.s

E (gi) ,⇒ gn −→
p
E (gi)

Note remember Almost sure convergence implies Convergence in probability which is what the

above two terms is showing. Thus,

p lim
n−→∞

(β̂ − β) = Σ−1xxE (gi) (5)

Note, under the large sample distribution assumption for OLS, we assumed that Σxx is non-singular

(which implies the inverse exist) and weak exogeneity, that is E (gi) = 0 Therefore,

p lim
n−→∞

(β̂ − β) = Σ−1xx 0

p lim
n−→∞

(β̂ − β) = 0⇔, β̂ −→
p
β

Hence, the OLS estimator is consistent.

2 Question 2

Show that the asymptotic variance of the OLS estimator is Σ−1xxSΣ−1xx . Include in your answer an expla-

nation of what Σxx and S are. Show how the expression for AVar
(
β̂OLS

)
simplifies under conditional

homoskedasticity and independence.

Answer:

We want to prove that
√
n(β̂ − β) −→

d
N
(
0,Σ−1xxSΣ−1xx

)
The first step of this proof is we want to use the sampling error

β̂ − β = S−1xxgn
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Next, we multiply both sides with
√
n

√
n(β̂ − β) =

√
nS−1xxgn

Note, multiplying
√
n on both sides ensure that we do not converge to a degenerate distribution, and it

converges to a well-defined distribution.

Note, from the proof in consistency we already know that

S−1xx −→
p

Σ−1xx

Now, for
√
ngn, we apply assumption 2.5 and using the central limit theorem we get

√
ngn −→

d
N(0,S)

where S = E [gig
′
i] is the asymptotic variance of gn.

Then applying the Slutsky theorem (or Hayashi Lemma 2.4) where xn −→
d

x,x ∼ N(0,Σ), and An −→
p

A

then Anxn −→
d
N (0,AΣA′) . In this proof, we can assume An = S−1xx and xn =

√
ngn. Then:

√
nS−1xxgn −→

d
N
(
0,Σ−1xxSΣ−1xx

)
since where assume that the Σxx is symmetric matrix, then Σ−1xx = Σ−1

′

xx . Thus, we have proved that

√
n(β̂ − β) −→

d
N
(
0,Σ−1xxSΣ−1xx

)
If we assume conidtional homoskedasticity and independence, then

S = E [gig
′
i] = E

[
ε2ixix

′
i

]
= E

[
ε2i
]
E [xix

′
i] = σ2Σxx

Thus,
√
n(β̂ − β) −→

d
N
(
0,Σ−1xxσ

2ΣxxΣ−1xx
)

since ΣxxΣ−1xx = I
√
n(β̂ − β) −→

d
N
(
0, σ2Σ−1xx

)

3 Question 3

Derive the OLS estimator β̂OLS = (X′X)
−1

X′y as a Method of Moments estimator.
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Answer:

The basic intuition behind the method of moments (MM) is that you want to set the population param-

eter moments to the sample moments. In this section, we want to derive the OLS estimator using MM.

Let’s first start by recappping the weak exogeneity assumption

E (xiεi) = E (xi (yi − xiβ)) = E (gi) = 0

This weak exogeneity assumption can also called the population moment condition. Next, we want to

derive the corresponding sample moment for the above equation. Let’s first define some terms

ε̂i = yi − xiβ̂0

where ε̂i is the estimated residuals and β̂0 is an estimator of β. Using the above term, we can derive the

sample moment

g
(
β̂0

)
=

1

n

n∑
i=1

gi

(
β̂0

)
=

1

n

n∑
i=1

xiε̂i =
1

n

n∑
i=1

xi

(
yi − xiβ̂0

)
We can rewrite the above term is matrix form

g
(
β̂0

)
=

1

n
X′ε̂ =

1

n
X′
(
y −Xβ̂0

)
=

1

n
X′y − 1

n
X′Xβ̂0

Now for the MM, want to set

g
(
β̂0

)
= E (gi)

Given the population moment condition we have

g
(
β̂0

)
= 0

1

n
X′y − 1

n
X′Xβ̂0 = 0

1

n
X′y =

1

n
X′Xβ̂0

X′y = X′Xβ̂0

Pre-multiply both sides by (X′X)
−1

,

(X′X)
−1

X′y = (X′X)
−1

X′Xβ̂0

Since (X′X)
−1

(X′X) = I

β̂0 = β̂OLS = (X′X)
−1

X′y

which is the OLS estimator.
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4 Question 4

Derive the IV estimator in the exactly-identified case β̂IV = (Z ′X)
−1

Z′y as a Method of Moments esti-

mator.

Answer:

With instrumental variables (IV), we have some linear regression function form, but now have a n× L

matrix Z of instruments. Recapping, X is a n × K matrix of regressors. L is denoted as the no. of

instruments and K is the no. of regressors. IV is used when there are endogenity presence in the

regressors. Similar to the OLS weak exogeneity assumption, there is also a condition associated for the

instruments

E (ziεi) = E (zi (yi − xiβ)) = E (gi) = 0

Note zi can interpreted as the vector the instruments for the i observation. In a similar fashion, we can

use the estimated residuals ε̂i and an estimator of β, β̂0, to derive the corresponding sample moment for

the above term

g
(
β̂0

)
=

1

n

n∑
i=1

gi

(
β̂0

)
=

1

n

n∑
i=1

ziε̂i =
1

n

n∑
i=1

zi

(
yi − xiβ̂0

)
We can rewrite the above term is matrix form

g
(
β̂0

)
=

1

n
Z′ε̂ =

1

n
Z′
(
y −Xβ̂0

)
=

1

n
Z′y − 1

n
Z′Xβ̂0

Next, if we assume L = K, that is the no. of instruments exactly equal the no. of regressors, then

we can use MM to derive the IV estimator. First, we set the set population moment equal to sample

moment

g
(
β̂0

)
= E (gi)

Note, from the population moment condition, we have

g
(
β̂0

)
= 0

1

n
Z′y − 1

n
Z′Xβ̂0 = 0

1

n
Z′y =

1

n
Z′Xβ̂0

Z′y = Z′Xβ̂0

Pre-multiply both sides by (Z′X)
−1

,

(Z′X)
−1

Z′y = (Z′X)
−1

Z′Xβ̂0
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Since (Z′X)
−1

(Z′X) = I

β̂0 = β̂IV = (Z′X)
−1

Z′y

which is the IV estimator.

5 Question 5

The sampling error of the GMM estimator is, in data matrix form,
(
β̂GMM − β

)
= (X ′ZWnZ

′X)
−1
X ′ZWnZ

′ε.

Rewrite this in sample moment form and use it to show that the GMM estimator β̂GMM is consistent.

Some Basic:

When we have the no. of instruments greater than the no. of regressor L > K, we have an overidentified

model and MM cannot work. We have to use Generalised method of moments (GMM). In the GMM

approach, we use this weighting matrix Wn and rewrite the moment conditions in quadratic form. Thus,

we derive the GMM estimator by

β̂GMM = argmin
β̂0

{
ng
(
β̂0

)′
Wng

(
β̂0

)}

β̂GMM = argmin
β̂0

n

(
1

n
Z′y − 1

n
Z′Xβ̂0

)′
Wn

(
1

n
Z′y − 1

n
Z′Xβ̂0

)

This is similar to minimising the SSR of the linear regression model to derive the OLS estimator. Taking

the first-order condition respect to β̂0 and setting it equal to 0 , will yield

β̂GMM = (X′ZWnZ
′X)
−1

X′ZWnZ
′y

β̂GMM = (X′ZWnZ
′X)
−1

X′ZWnZ
′(Xβ + ε)

we get the sampling error of

β̂GMM − β = (X′ZWnZ
′X)
−1

X′ZWnZ
′ε

Answer:

Next, we want to rewrite the sampling error β̂GMM − β into a sample moment form

β̂GMM − β =

(
1

n
X′ZWn

1

n
Z′X

)−1
1

n
X′ZWn

1

n
Z′ε

If we define

SZX =
1

n
Z′X

g =
1

n
Z′ε
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Then,

β̂GMM − β = (S′ZXWnSZX)
−1

S′ZXWng

Similar to the OLS proof of consistency, we want to show

p lim
n−→∞

β̂GMM = β

The first step of this proof is to apply Hayashi Lemma 2.3(a) (or Slutsky’s theorem) that is

p lim
n−→∞

(
β̂GMM − β

)
= p lim

n−→∞

{
(S′ZXWnSZX)

−1
S′ZXWng

}
p lim
n−→∞

(
β̂GMM − β

)
= p lim

n−→∞

(
(S′ZXWnSZX)

−1
)
× plim

ZX
(S′ZX)× p
n−→∞

lim
n−→∞

(Wn)× p lim
n−→∞

(g)

Next, we apply the strong law of large numbers (SLLN) where the sample mean converges to the

population mean and the continuous mapping theorem,

S′ZX −→
a.s

Σ′ZX ,⇒ S′ZX −→
p

Σ′ZX

gn −→
a.s

E (gi) ,⇒ gn −→
p
E (gi)

Wn −→
a.s

W,⇒Wn −→
p

W

Note we also have a weak exogeneity assumption, that is E (gi) = 0. Therefore,

p lim
n−→∞

(
β̂GMM − β

)
= (Σ′ZXWΣZX)

−1 × Σ′ZX ×W × 0

pn−→∞

(
β̂GMM − β

)
= 0,⇔, β̂GMM −→

p
β

Therefore, the GMM estimator is consistent.

6 Question 6

The sampling error of the GMM estimator is, in data matrix form,
(
β̂GMM − β

)
= (X′ZWnZXX)

−1
X′ZWnZ′ε

. Rewrite this in sample moment form and use it to show that the asymptotic variance of the GMM es-

timator is (Σ′zxWΣzx)
−1

(Σ′zxWSWΣzx) (Σ′zxWΣzx)
−1

. Include in your answer an explanation of what

Σzx, W and S are.

Answer:

We want to prove that

√
n(β̂ − β) −→

d
N
(

0, (Σ′ZXWΣZX)
−1

(Σ′ZXWSWΣZX) (Σ′ZXWΣZX)
−1
)
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The first step of this proof is we want to use the sampling error

β̂GMM − β = (S′ZXWnSZX)
−1

S′ZXWng

Next, we multiply both sides with
√
n

√
n
(
β̂GMM − β

)
=
√
n (S′ZXWnSZX)

−1
S′ZXWngn

Note, multiplying
√
n on both sides ensure that we do not converge to a degenerate distribution, and it

converges to a well-defined distribution. Next, we apply the Slutsky theorem (or Hayashi Lemma 2.4)

where xn −→
d

x,x ∼ N(0,Σ), and An −→
p

A then Anxn −→
d
N (0,AΣA′) . In this proof, we can assume

An = (S′ZXWnSZX)
−1

S′ZXWn and xn =
√
ngn. Note, from the proof in consistency we already know

that

S′ZX −→
a.s

ΣZX ,⇒ S′ZX −→
p

Σ′ZX

Wn −→
a.s

W,⇒Wn −→
p

W

Therefore A = (Σ′ZXWΣZX)
−1

Σ′ZXW and A′ = WΣZX (Σ′ZXWΣZX)
−1

. Similar to the OLS proof,

for
√
ngn, we apply assumption 35 and using the central limit theorem we get

√
ngn −→

d
N(0,S)

where S = E [gig
′
i] is the asymptotic variance of gn. Thus, applying the Slutsky theorem, we get

√
n
(
β̂GMM − β

)
−→
d
N
(

0, (Σ′ZXWΣZX)
−1

Σ′ZXWSWΣZX (Σ′ZXWΣZX)
−1
)

Thus, we have proved that the GMM estimator is asymptotic normal.

7 Question 7

Show that the conditional moment restriction E (εi | xi) = 0 implies that any function f(.) of xi is

orthogonal to εi

Answer:

Under the OLS assumption 1.2, we assume ’Strict exogeneity’ which implies a zero conditional mean

E (εi | X) = 0

8



and the implication of this assumption are

E (εi) = 0,∀i = 1, . . . n

E (xjεi) = 0

That is the unconditional mean of error is zero and all the regressors are orthogonal to all the errors.

Note weak exogeneity is

E (xiεi) = 0

assumes that xi is just orthogonal to its comtemporaneous error εi. This is an example of an unconditional

moment restriction. Next, we can make a st ronger assumption that

E (εi | xi) = 0,∀i = 1, . . . n

and this a conditional moment restriction. This conditional moment restriction also implies

E (f (xi) εi) = 0

that is not only xi is orthogonal to εi but also any function f of xi is orthogonal to εi too. We can show

this by writing the above term using the law of total expectation E(E(X | Y )) = E(X),

E (f (xi) εi) = E (E (f (xi) εi) | xi)

Thus, since xi is non-random, we can move the f (xi) outside of the expectation operator and

E (f (xi) εi) = E (f (xi)E (εi | xi))

and using our conditional moment restriction E (εi | xi) = 0:

E (f (xi) εi) = E (f (xi) 0)

E (f (xi) εi) = 0

8 Question 8

Consider the simplest possible linear model yi = βxi + εi where we have a single regressor xi and all

variables are zero-mean. The OLS estimator for this model is β̂OLS =
∑

i xiyi∑
i x

2
i

. Derive an expression

for the inconsistency in the OLS estimator p lim
(
β̂OLS − β

)
in the case that weak exogeneity fails, i.e.,

E (xiεi) 6= 0. Interpret this expression and explain what determines the sign, i.e., when is it positive or

negative.
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Answer:

Consider a linear regression model with no constant

yi = xiβ + εi

and the OLS estimator is

β̂ =

∑
i xiyi∑
i x

2
i

We want to get the above equation in sample error form so we subsititute (22) into (23)

β̂ =

∑
i xi (xiβ + εi)∑

i x
2
i

β̂ =

∑
i x

2
iβ∑

i x
2
i

+

∑
i xiεi∑
i x

2
i

β̂ = β +

∑
i xiεi∑
i x

2
i

β̂ − β =

∑
i xiεi∑
i x

2
i

Next, we want to get the above term in sample moment form (similar to section 1.2 or the OLS proof

of consistency)

β̂ − β =
1
n

∑
i xiεi

1
n

∑
i x

2
i

We want to find

p lim
n−→∞

(β̂ − β) = p lim
n−→∞

( 1
n

∑
i xiεi

1
n

∑
i x

2
i

)
Firstly, we can apply Hayashi Lemma 2.3(a) (or Slutsky’s theorem) that is

p lim
n−→∞

(β̂ − β) =
p limn−→∞

(
1
n

∑
i xiεi

)
p limn−→∞

(
1
n

∑
i x

2
i

)
Next, we apply the strong law of large numbers (SLLN) where the sample mean converges to the

population mean and the continuous mapping theorem (note we assumes that both y and X are jointly

stationary and ergodic)

(
1

n

∑
i

x2i

)−1
−→
a.s

E
(
x2i
)−1

,⇒

(
1

n

∑
i

x2i

)−1
−→
p
E
(
x2i
)−1

1

n

∑
i

xiεi −→
ais

E (xiεi) ,⇒
1

n

∑
i

xiεi −→
p
E (xiεi)

10



Note remember ”Almost sure convergence” implies ”Convergence in probability” which is what the above

two terms is showing. Thus,

p lim
n−→∞

(β̂ − β) =
E (xiεi)

E (x2i )

However, here we assumed that E (xiεi) 6= 0 which does not imply p limn−→∞(β̂−β) = 0. Note the terms

in (24) are used to the calculate the covariance (cov (xiεi) = E (xiεi)− E (xi)E (εi)) and the variance

(var (xi) = E
(
x2i
)
− E (xi)

2
)

, therefore (24) can be loosely written as

p lim
n−→∞

(β̂ − β) =
cov (xiεi)

var (xi)

Since the denominator is always positive, the sign of the inconsistency in the OLS estimator is given

by the numerator. If the regressor is positively correlated with the error, the OLS estimator is biased

upwards; if the regressor is negatively correlated with the error, the OLS estimator is biased downwards.

9 Question 9

Consider the simplest possible linear model yi = βxi + εi where we have a single regressor xi and all

variables are zero-mean. Say we also have a single excluded instrument zi that is also zero-mean. The IV

estimator for this model is β̂iv =
∑

i ziyi∑
i zixi

. Derive an expression for the inconsistency in the IV estimator

p lim
(
β̂IV − β

)
in the case that weak exogeneity fails, i.e., E (ziεi) 6= 0. Interpret this expression and

explain what determines the sign, i.e., when is it positive or negative.

Answer:

Consider a linear regression model with no constant

yi = xiβ + εi

and the IV estimator is

β̂iv =

∑
i ziyi∑
i zixi

We want to get the above equation in sample error form so we subsititute (26) into (27)

β̂iv =

∑
i zi (xiβ + εi)∑

i zixi

β̂iv =

∑
i zixiβ∑
i zixi

+

∑
i ziεi∑
i zixi

β̂iv = β +

∑
i ziεi∑
i zixi

β̂iv − β =

∑
i ziεi∑
i zixi
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Next, we want to get the above term in sample moment form (similar to section 1.2 or the OLS proof

of consistency)

β̂iv − β =
1
n

∑
i ziεi

1
n

∑
i zixi

We want to find

p lim
n−→∞

(
β̂iv − β

)
= p lim

n−→∞

( 1
n

∑
i ziεi

1
n

∑
i zixi

)
Firstly, we can apply Hayashi Lemma 2.3(a) (or Slutsky’s theorem) that is

p lim
n−→∞

(
β̂iv − β

)
=
p limn−→∞

(
1
n

∑
i ziεi

)
p limn−→∞

(
1
n

∑
i zixi

)
Next, we apply the strong law of large numbers (SLLN) where the sample mean converges to the

population mean and the continuous mapping theorem (note we assumes that both y,X and Z are

jointly stationary and ergodic)

(
1

n

∑
i

zixi

)−1
−→
a.s

E (zixi)
−1
,⇒

(
1

n

∑
i

zixi

)−1
−→
p
E (zixi)

−1

1

n

∑
i

ziεi −→
a.s

E (ziεi) ,⇒
1

n

∑
i

ziεi −→
p
E (ziεi)

Note remember ”Almost sure convergence” implies ”Convergence in probability” which is what the above

two terms is showing. Thus,

p lim
n−→∞

(
β̂iv − β

)
=
E (ziεi)

E (zixi)

However, here we assumed that E (ziεi) 6= 0 which does not imply p limn→∞

(
β̂iv − β

)
= 0. Note

the terms in (28) are used to the calculate the covariance (cov (ziεi) = E (ziεi)− E (zi)E (εi) and

cov (zixi) = E (zixi)− E (zi)E (xi)), therefore (28) can be loosely written as

p lim
n−→∞

(
β̂iv − β

)
=

cov (ziεi)

cov (zixi)

Either way, it is the covariance of the instrument and the error divided by the covariance of the instrument

and the regressor. Now the sign depends on both the numerator and denominator. If the instrument is

positively correlated with the regressor, the denominator is positive, and the sign of the inconsistency in

the IV estimator is given by sign of the correlation bet ween the instrument and the error (positive →

upward bias, negative → downward bias). If the instrument is negatively correlated with the regressor,

the denonminator is negative and the sign of the inconsistency in the IV estimator is the opposite of the

sign of the correlation bet ween the inst rument and the error.
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10 Question 10

To obtain a consistent estimate of the asymptotic variance of the OLS estimator, we need consistent

estimates of Σxx and S. Explain how you would approach this task if (a) you have cross-section data,

you suspect there is a heteroskedasticity problem, but you are unwilling to estimate the form of het-

eroskedasticity parametrically; (b) you have time-series data, you suspect there is a serial correlation

problem, but you are unwilling to estimate the form of serial correlation parametrically. How would

your answers to (a) and (b) change if you were willing to use a parametric approach?

Answer Guide:

(a) The natural approach is to use a heteroskedastic-consistent covariance estimator based on ŜHC .

Should provide the formulas, e.g., slide 42 in Lecture Notes 6 plus the sandwich formula for the asymp-

totic variance of the OLS estimator. Cross-section means OK to assume independence.

(b) The natural approach is to use a heteroskedastic- and autocorrelation-consistent covariance esti-

mator based on ŜHAC . Should provide the formulas, e.g., slide 27 in Lecture Notes 7 plus the sandwich

formula for the asymptotic variance of the OLS estimator. Alternatively, could assume that the lag at

which serial correlation disappears is known (the question doesn’t rule this out) and so use the special

case on slide 28 in Lecture Notes 7. Another alternative - assume that only serial correlation is a concern

(the question doesn’t rule this out) and use a version that assumes conditional homoskedasticity as on

slide 36 of Lecture Notes 7 Could expand discussion by talking about different kernels etc.

(a)+ parametric approach means using GLS or FGLS (can also call this WLS). If GLS, should state that

you need to know the form of the skedastic function; otherwise it needs to be estimated, as in FGLS.

Could discuss ways of estimating the skedastic function flexibly; we covered one method in a Stata lab

and assignment but there are others.

(b)+ parametric approach again means GLS or FGLS, or optionally could mention ML. This was not

covered in detail in the lectures so you wouldn’t be expected to go into great detail here. Could discuss

in general terms what is involved here, maybe using the AR(1) example discussed on slides 43-46 of

Lecture Notes 6.
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