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1 Introduction

By popular demand I’ll cover the following topics

• Generalised Method of Moments

• Weak Identification

• Specification Tests

• Nonlinear Estimators and Maximum Likelihood

2 Generalised Method of Moments

To remind you gently of GMM, lets compare it to OLS. In OLS we have the
regression model

y = Xβ + ε

We obtain an estimate for β by minimising the sum of squared residuals ε̂′ε̂:

∂

∂β̂
(ε′ε) = 0

∂

∂β̂
((y′ − β̂X ′)(y −Xβ̂)) = 0

∂

∂β̂
(y′y − y′Xβ̂ − β̂X ′y + β̂X ′Xβ̂) = 0

−2X ′y + 2X ′Xβ̂ = 0

β̂OLS = (X ′X)−1X ′y

One of the crucial assumptions of our data that we rely on to obtain a consistent
estimate for β is weak exogeneity i.e. E(X ′

iεi) = 0. This object E(X ′
iεi) is k×1,

where k is the number of regressors (including the “1’ term).
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Let me now convince you that we don’t need to do OLS, but can instead use
the weak exogeneity assumption to obtain an estimate of β directly. Instead of
minimising ε̂′ε̂, start with the sample moment condition:

1

n

n∑
i=1

X ′
i ε̂i = 0

Why call this a sample moment condition? The analogous population moment
condition is E(X ′

iεi) = 0. But we can’t see ε, but we can only see ε̂. And we
can’t observe the true expectation, so we work with the sample average instead.

This can be written in matrix form (and multiply by n) to get:

X ′ε̂ = 0

X ′(y −Xβ̂) = 0

X ′y −X ′Xβ̂ = 0

β̂MM = (X ′X)−1X ′y

By some strange trickery, we get to the same estimate as OLS but without
minimising the sum of squared residuals, but instead working with the sample
moment condition directly. What was done here is known as “method of mo-
ments”. There are k moment conditions, and these are used to inform the k
parameters of the model. The basic philosophy of this is that what is true for
the population moments should also hold for the sample moments.

2.1 The Instrumental Variables estimator

Sometimes our weak exogeneity assumption is unrealistic. We may be trying
to estimate the effect of education on wages, but are worried that education is
endogenous. Endogeneity can arise for a few different reasons:

• Ommitted variable bias

• Reverse causality

• Measurement error

• Non-random sample selection

In this example, this could be:

• Parental income helps children get more education and helps them get a
high wage job, but we don’t control for this in our regression (meaning it
is in the error term)

• Individuals anticipating high wage careers take on more education

• Education is self-reported and they are forgetful (or liars)
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• We don’t observe the wages of some of the population (because they are
unemployed) or some individuals are more likely to drop out of the sample
for reasons that also affect wages

Without our weak exogeneity assumption, β̂ will be inconsistent. So it seems
like we are hopeless here. The ideal situation would be some sort of experiment
in which we randomly choose children to be put in varying educational scenar-
ios. The randomness of such an approach would guarantee us weak exogeneity.
While experimental economics is on the rise in the 21st century (particularly
within development and behavioural economics), it is still unusual due to the
high financial and ethical costs. The next best thing is some sort of “natural
experiment”. Is there some sort of random variable/event/influence that makes
children more or less likely to get extra education? We call such a thing an
instrumental variable. For example, Card (who recently won the Nobel prize)
used proximity to college as a variable that does this. Other examples gener-
ally in economics include policy reforms, forecasting errors, weather. Ideally, an
instrumental variable should be:

• Relevant (correlated “enough” with the endogenous regressor)

• Exogenous

Often the validity of an instrumental variable approach depends on these two
factors. The first (which we will return to when discussing weak identification)
can be tested. The second however, is generally subjective and usually relies
on human intuition. For example, suppose an educational reform to improve
schooling is implemented in some areas but not others. This seems like a great
natural experiment; we can learn a lot by comparing wages of those who were
subjected to the policy reform to their similar counterparts in the unreformed
areas. But do we know that which areas implemented the reform vs. which did
not are actually random? If it’s non-random in a way captured by our control
variables, then we are fine, but otherwise there could still be endogeneity issues.
Often in instrumental variables approaches, the results are compared to OLS,
as if to get a sense of the direction of OLS inconsistency, even if there is not full
confidence that IV removes all the inconsistency.

In our IV estimator, we have the same number of instrumental variables as
we do endogenous regressors. We still have the same notation for the regression
model:

y = Xβ + ε,

where X contains all the regressors, endogenous and exogenous. We also in-
troduce Z, which contains everything exogenous. Let’s return to the example I
mentioned:

1. Years of schooling would only be put in X, as we are treating it as our
endogenous variable of interest

2. Control variables, such as gender, race, age etc. would be put in both X
and Z
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3. Proximity to college would only be put in Z, as it is not a regressor i.e.
does not effect y (wages) directly, but satisfies exogeneity

We could also do IV if for example we had two endogenous regressors and two
instrumental variables. More generally, there are three types of variable:

1. Endogenous regressors (put in X only)

2. Exogenous regressors or controls (put in both X and Z; known in the
lectures as “included instruments”)

3. Instrumental variables (put in Z only; known as “excluded instruments”)

Our population moment condition is: E(Z ′
iεi) = 0, which is k × 1. Note that

this notation means that we are not applying the weak exogeneity assumption
to the endogenous regressors. Let’s use the “method of moments” approach
before, and work with the analogous sample moment condition:

1

n

n∑
i=1

Z ′
iε̂i = 0

Z ′ε̂ = 0

Z ′(y −X ′β̂) = 0

Z ′y − Z ′Xβ̂ = 0

β̂IV = (Z ′X)−1Z ′y

Note that in OLS, we are treating everything as exogenous, so you can see
that setting Z = X just gets us the OLS estimator. We now have a consistent
estimator (I’ll show the proof for the GMM case). Note however that IV is not
technically unbiased; there is still a “small sample bias” phenomenon, I’ll also
discuss this for GMM case.

2.2 Two Stage Least Squares

What about cases where we have more instrumental variables than we do en-
dogenous regressors? This is known as an overidentified model (the opposite
case, an underidentified model is impossible to estimate). Here we will dis-
tinguish between k, the number of regressors and l, the number of exogenous
variables. For example, if we had one endogenous regressor but two instrumental
variables, then l = k + 1. To see how this works note that:

k = no. of endogenous regressors + no. of controls

l = no. of instrumental variables + no. of controls

So the gap between l and k only depends on how many instrumental variables we
have compared to endogenous regressors. What happens to our IV estimator?

β̂IV = (Z ′X)−1Z ′y
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This no longer exists because Z ′X is l×k (remember Z is n× l and X is n×k)
and we can only invert square matrices. Two stage least squares finds a way
round this: first create an exogenous proxy for X, called X̂, and perform OLS
on X̂. To construct the proxy, we first “regress” X on Z (note this is actually
multiple regressions, but the notation is similar):

X = Zλ+ ν

OLS estimate:
λ̂ = (Z ′Z)−1Z ′X

Now construct X̂:
X̂ = Z(Z ′Z)−1Z ′X

Let’s use the notation PZ = Z(Z ′Z)−1Z ′, where PZ is idempotent and sym-
metric.

What is the idea here? Well X̂ = Zλ̂ is now “made out of Z”, so we can
treat X̂ like it’s exogenous. Note however this is not strictly true for small
samples as λ̂ is random and depends on X. However, as our sample gets larger
and λ̂ converges, X̂ becomes like an exogenous proxy for X. Now do OLS of y
on X̂:

β̂ = (X̂ ′X̂)−1X̂ ′y

Substitute X̂ = PZX:

β̂ = (X ′P ′
ZPZX)−1X ′P ′

Zy

Use the idempotent and symmetric features of the projection matrix:

β̂ = (X ′PZX)−1X ′PZy

Now substitute PZ = Z(Z ′Z)−1Z ′ to get our 2SLS estimator:

β̂2SLS = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y

Great, now we have an intuitive way to estimate overidentified models. And
look at what happens if l = k: then (X ′Z) and (Z ′X) are both invertible. Use
the rule:

(ABC)−1 = C−1B−1A−1

β̂2SLS:l=k = (Z ′X)−1(Z ′Z)(X ′Z)−1X ′Z(Z ′Z)−1Z ′y

β̂2SLS:l=k = (Z ′X)−1Z ′y

β̂2SLS:l=k = β̂IV

So IV can be thought of a special case of 2SLS when l = k.
While this two step procedure provides us a way of getting round the fact

that (Z ′X) is not invertible, there is actually a different approach that will turn
out to be “better”.
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2.3 The Generalised Method of Moments Estimator

Let’s return to the population moment condition:

E(Z ′
iεi) = 0,

and its sample analogue:

1

n

n∑
i=1

Z ′
iε̂i = 0.

This is a set of l equations, but we only have k unknowns (the β’s), which is
where our problem comes in. We cannot get the above set of equations to hold
exactly. Let’s imagine a generic situation where we have two equations, which
look like this: [

a1
a2

]
=

[
0
0

]
But suppose we are not able to get a1 and a2 to hit zero exactly. A different
approach we can use is to penalise a1 and a2 for being far away from zero.
The most convenient way to do this is quadratically (this is nice because the
derivative of a quadratic is linear). For example:

pentalty = a21 + a22

Our penalty indifference curves (if you can imagine such a thing) will look like
circles around the origin. But what if a1 and a2 are completely different in scale,
so we might want to allow for different weightings e.g.

pentalty = w1a
2
1 + w2a

2
2,

where w1 > 0, w2 > 0. Here the indifference curves will be ellipses stretched
horizontally or vertically depending on w1/w2. However, we can be even more
general by allowing the cross term to be penalised:

pentalty = w1a
2
1 + w2a

2
2 + 2w12a1a2

Here, not only may our indifference curves be elliptical, but they can be be
rotated depending on the sign of w12. The “2” seems arbitrary, but fits with
the following notation:

penalty =
[
a1 a2

] [w11 w12

w21 w22

] [
a1
a2

]
If we break this out we get w11a

2
1 +w22a

2
2 +(w12 +w21)a1a2. Since w12 vs. w21

doesn’t matter, we may as well force them to be equal. We must also ensure
that this weighting matrix is positive definite, otherwise we may actually be
reducing the penalty when me move further away from 0 in some directions.
This can be generalised to:

penalty = a′Wa,
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where a is an l × 1 vector that we want to be close to zero and W is a l × l
positive definite weighting matrix.

Let’s now think of what a “good” choice for W is. Imagine our a1 and a2
as being random variables. Let’s suppose a1 has a standard deviation of 100,
and a2 has a standard deviation of 0.02. Suppose we chose W to be the identity
matrix, in which case we have

penalty = a21 + a22

In this case, the random variation in a1 will largely obscure any effects of a2; so
the penalty term seems unbalanced. A much more sensible approach would be
the following:

penalty = (
a1
100

)2 + (
a2
0.02

)2

This would correspond to

W =

[
10, 000 0

0 0.0004

]−1

You can see here that we chose:

W =

[
V ar(a1) 0

0 V ar(a2)

]−1

It seems that we could also account for the covariance by having:

W =

[
V ar(a1) Cov(a1, a2)

Cov(a2, a1) V ar(a2)

]−1

Then our penalty looks like:

penalty =
V ar(a2)a

2
1 + V ar(a1)a

2
2 − 2Cov(a1, a2)a1a2

V ar(a1)V ar(a2)− Cov(a1, a2)2

You can see here that comparing the weights on a21 and a22, more weight is
applied to the term with smaller variance, which seems sensible. But we also
account for the cross term a1a2. Note that the sign on this cross term depends
on the covariance of a1 and a2. Imagine Cov(a1, a2) > 0. Then our penalty will
tend to downweigh an outcome where a1 and a2 are the same sign but increase
the penalty if they are different signs. This makes perfect sense! If a1 and a2
are highly correlated, then be so surprised if they are both positive or both
negative, so having a negative on the a1a2 term is appropriate.

Hopefully this convinces you that W = V ar(a)−1 is a sensible choice for a
weighting matrix.

Let’s return to our problem:

1

n

n∑
i=1

Z ′
iε̂i = 0.
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Since we can’t solve this exactly: instead we should minimise our penalty,
which in the GMM context we call the J statistic:

J(β̂) = (
√
n
1

n

n∑
i=1

Z ′
iε̂i)

′W (
√
n
1

n

n∑
i=1

Z ′
iε̂i)

Note that I have multiplied the sample moment by
√
n. This ensures that it

has a well defined asymptotic distribution. This obviously has no bearing on
the minimisation problem. This means you will often see the J statistic written
like:

J(β̂) = n(
1

n

n∑
i=1

Z ′
iε̂i)

′W (
1

n

n∑
i=1

Z ′
iε̂i)

And our sensible choice of W?

W =
[
V ar(

√
n
1

n

n∑
i=1

Z ′
iε̂i)

]−1
,

or equivalently:

W =
[
AV ar(

1

n

n∑
i=1

Z ′
iε̂i)

]−1

The notation in the lectures also introduces the following:

gi(β̂) = Z ′
iε̂i

ḡn(β̂) =
1

n

n∑
i=1

Z ′
iε̂i,

S = AV ar(ḡn(β̂))

Which allows the J stat to be written more compactly as

J(β̂) = nḡn(β̂)
′Wḡn(β̂),

with sensible:
W = S−1
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Let’s work out the GMM estimator for a given W :

∂

∂β̂

(
n(

1

n

n∑
i=1

Z ′
iε̂i)

′W (
1

n

n∑
i=1

Z ′
iε̂i)

)
= 0

∂

∂β̂

(
(Z ′ε)′W (Z ′ε)

)
= 0

∂

∂β̂

(
(y −Xβ̂)′ZWZ ′(y −Xβ̂)

)
= 0

∂

∂β̂

(
y′ZWZ ′y − y′ZWZ ′Xβ̂ − β̂′XZWZ ′y + β̂′X ′ZWZ ′Xβ̂

)
= 0

−2X ′ZWZ ′y + 2X ′ZWZ ′Xβ̂ = 0

β̂GMM = (X ′ZWZ ′X)−1X ′ZWZ ′y

Now that we have the GMM estimator, let’s check its asymptotic properties.
To show consistency:

β̂GMM = (X ′ZWZ ′X)−1X ′ZWZ ′Xβ + (X ′ZWZ ′X)−1X ′ZWZ ′ε

β̂GMM = β + (X ′ZWZ ′X)−1X ′ZWZ ′ε

β̂GMM − β = (X ′ZWZ ′X)−1X ′ZWZ ′ε

β̂GMM − β =
( n∑

i=1

[X ′
iZi]×W ×

n∑
i=1

[Z ′
iXi]

)−1 n∑
i=1

[X ′
iZi]×W ×

n∑
i=1

[Z ′
iεi]

β̂GMM − β =
( 1

n

n∑
i=1

[X ′
iZi]×W × 1

n

n∑
i=1

[Z ′
iXi]

)−1 1

n

n∑
i=1

[X ′
iZi]×W × 1

n

n∑
i=1

[Z ′
iεi]

By the weak law of large numbers:

1

n

n∑
i=1

X ′
iZi −→

p
E[X ′

iZi]

1

n

n∑
i=1

Z ′
iXi −→

p
E[Z ′

iXi]

1

n

n∑
i=1

[Z ′
iεi] −→

p
E[Z ′

iεi] = 0

And by the continuous mapping theorem and Slutsky’s theorem, we may mul-
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tiply these together and apply the inverse:

β̂GMM − β −→
p

(
E[X ′

iZi]×W × E[Z ′
iXi]

)−1

E[X ′
iZi]×W × E[Z ′

iεi]

β̂GMM − β −→
p

0

Great, so we know β̂GMM is consistent. What about it’s asymptotic distribu-
tion?

√
n(β̂GMM − β) =

( 1

n

n∑
i=1

[X ′
iZi]×W × 1

n

n∑
i=1

[Z ′
iXi]

)−1 1

n

n∑
i=1

[X ′
iZi]×W ×

√
n
1

n

n∑
i=1

[Z ′
iεi]

Notice the strategic placement of
√
n.

First deal with the left chunk. By WLLN, CMT and Slutsky:( 1

n

n∑
i=1

[X ′
iZi]×W × 1

n

n∑
i=1

[Z ′
iXi]

)−1 1

n

n∑
i=1

[X ′
iZi]×W −→

p

(
Σ′

ZXWΣZX

)−1

Σ′
ZXW,

where ΣZX = E(Z ′
iXi).

Now for the right part. By the central limit theorem:

√
n
1

n

n∑
i=1

[Z ′
iεi] −→

d
N(0, AV ar(

1

n

n∑
i=1

[Z ′
iεi])) = N(0, S)

Combining both with Slutsky’s theorem, remember:

if â −→
p

a

and b̂ −→
d

n(0, vb)

then âb̂ −→
d

N(0, avba
′)

This means:

√
n(β̂GMM − β) −→

d
N
(
0,
(
Σ′

ZXWΣZX

)−1
Σ′

ZXWSWΣZX

(
Σ′

ZXWΣZX

)−1
)

Very messy! But if we choose the sensible W , W = S−1, this simplifies greatly:

√
n(β̂GMM − β) −→

d
N
(
0,
(
Σ′

ZXS−1ΣZX

)−1
)

Note: We can only use this simplification because W is chosen efficiently. If
we do 2SLS (where W = (Z ′Z)−1) we should generally use the messier form.

10

root n is placed at zero-mean term, then can use CLT

from CMT: 
if element in a function converges, 
the function also converges



2.4 The two stage feasible efficient estimator

We have an equation for β̂GMM and we know its asymptotic properties, but this
assumed we knew S = AV ar( 1n

∑n
i=1 Z

′
iεi). In practice, we don’t know this,

but can estimate S: Ŝ.
First obtain the two stage least squares estimator to get a consistent estimate

of β, and collect the error terms ε̂.
Then estimate

Ŝ = ˆAV ar(
1

n

n∑
i=1

Z ′
iεi),

using the appropriate covariance estimator (classical, HC, CR or HAC).

Then estimate β̂FGMM using Ŵ = Ŝ−1:

β̂FGMM = (X ′ZŴZ ′X)−1X ′ZŴZ ′y,

and we have our asympototic variance estimate:

ˆAV ar(β̂FGMM ) =
(
S′
ZX Ŝ−1SZX

)−1
,

where SZX = 1
n

∑n
i=1 Z

′
iXi is our sample estimate of ΣZX . A special case

should be noted. If we choose the classical estimate:

Ŝ = σ̂(Z ′Z)−1,

then we end up with the 2SLS estimator. This means that under conditional
homoskedasticity, the 2SLS turns out to be efficient! However, conditional ho-
moskedasticity is generally a bad assumption, so we can use either HC, CR or
HAC estimates for S, depending on whether we have cross section, panel or time
series, and obtain asymptotic efficiency gains for our GMM estimator over the
2SLS estimator. Re-iterated GMM estimators are also possible; we could take
the error terms and re-estimate Ŝ, plug it back in... until the estimator meets
some sort of numerical convergence, but the asymptotics remain the same.

3 Weak Identification

Take a close look at

β̂GMM = (X ′ZWZ ′X)−1X ′ZWZ ′y

Generally, (X ′ZWZ ′X)−1 will be invertible, barring some sort of perfect mul-
ticolinearity in the data. But consider the asymptotics used (WLLN+CMT):

(X ′ZWZ ′X)−1 −→
p

(Σ′
ZxWΣZx)

−1.

The continuous mapping theorem only works if the function is continuous at the
point of convergence. If f(.) is not continuous at f(E(ai)), then f( 1n

∑n
i=1 ai)
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is not guaranteed to converge to f(E(a)). Our function is the inversion of a
matrix. This function is not continuous if the matrix being inverted is singular.

Take a simpler example. Suppose we just have a scalar. What happens to

(
1

n

n∑
i=1

ai)
−1

Usually we would just say this converges to (E(ai))
−1. But what if E(ai) = 0.

Then it doesn’t converge at all, it will blow up to positive or negative infinity
depending on what side it happens to land on. The analogous problem for our
GMM estimator is that if Σ′

ZxWΣZx is not invertible, then our GMM estimator
will fail to converge. This is actually equivalent to saying Rank(ΣZX) < k:

iff Rank(ΣZX) < k :

Σ′
ZxWΣZx is singular

The “rank condition” is thereforeRank(ΣZX) = k, which guarantees Σ′
ZxWΣZx

is invertible.
What does this mean in practice? The rank condition holds if the instrumen-

tal variables are relevant i.e. correlated with the endogenous regressors. In our
case mentioned before, imagine proximity to college had no effect on schooling.
Then it would be completely useless as a natural experiment. Subsequently, our
IV/2SLS/GMM estimators will fail to converge.

3.1 Testing for Weak Identification

In the case where there is just one endogenous regressor, the procedure is rela-
tively straightforward. Let xe denote the endogenous regressor. Run OLS:

xe = Zλ+ ν

Now remember Z includes everything exogenous; controls and excluded instru-
ments! Now test the null-hypothesis that the coefficients on the excluded
instruments only are all equal to zero by running an F-test on:

H0 : λg = 0 ∀g ∈ excluded instruments

The traditional rule of thumb is to say that we have weak instruments if F < 10.
Why do we include the controls in the regression but not the test? For the
excluded instruments to be relevant, they must correlate with the endogenous
regressor in a way not already captured by the controls. Hence why we regress
it on all of Z but only test the excluded instruments.

What if there is more than one endogenous regressor? Could we just do the
test on each regressor? Unfortunately, it would be possible for both regressors
to pass the test, but still have a weak identification problem. It is not only
necessary for the excluded instruments to be relevant to the regressors, but
they must do so in a manner that is independent. For example, suppose we have
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two endogenous regressors, x1, x2, and two instruments z1, z2, no controls, no
constant, and consider how the endogenous regressors relate to the instruments:

x1 = λ11z1 + λ12z2 + ν1

x2 = λ21z1 + λ22z2 + ν2

But now suppose λ12 and λ22 were zero, so only z1 helped explain the instru-
ments. Each regressor would pass the test, but the model would be underiden-
tified since only one of the instruments is actually relevant. Or what if:

x1 = z1 + 3z2 + ν1

x2 = 2z1 + 6z2 + ν2

Then we run into a similar problem: if we think of it as 2SLS, then x̂1 and x̂2

will end up becoming perfectly correlated as our sample gets large. Another way
the rank assumption would fail is if the instruments were perfectly correlated
with each other. Testing for the multiple regressor case can be done with

• Anderson Canonical Correlation Test

• Cragg-Donald test

• Kleibergen-Paap test

These aren’t covered in this course, but remember the names. The first two rely
on the classical error assumptions, whereas the third can use more robust error
behaviour.

3.2 The Anderson-Rubin Test

The Anderson-Rubin Test is not a test for weak identification. It is
a hypothesis test regarding regression parameters that is robust to
weak idenfitication.

In this course we cover the Anderson-Rubin test for the case where we have
one endogenous regressor of interest. Notation: X1 = Z1 the controls, x2 the
exogenous regressor, Z2: the excluded instruments. Our reduced form model:

y = X1β1 + x2β2 + ε

x2 = X1Π1 + Z2Π2 + ν

Remember: reduced form is when we write every endogenous variable (this
includes y and any endogenous regressors) on the left hand side of separate
regressions. The right hand sides for the endogenous regressors include all the
exogenous stuff. It’s what we would do in the first stage of 2SLS.
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Now suppose I have a null hypothesis: H0 : β2 = β∗. How would we test
this? The standard way would be to obtain β̂GMM , obtain the standard error
for β̂2, and then run a t-test (or a Wald test but this should be the same for

large samples). However, the asymptotics we derived for β̂GMM are all wrong
if the rank condition fails!

The Anderson-Rubin test provides a way to test the null hypothesis that is
still valid in the presence of weak identification. However, we use a different
null:

H0 : β2 = β∗ and E(Z ′
iεi) = 0

If we reject the null, it could be because β̂2 ̸= β∗ and/or weak exogeneity fails.
To see how the test works, first subtract x2β

∗ from either side of the regres-
sion function:

y − x2β
∗ = X1β1 + x2(β2 − β∗) + ε

This procedure may look strange, but we set up the term β2 − β∗ which should
be zero under the null. The left hand side we may denote ỹ:

ỹ = X1β1 + x2(β2 − β∗) + ε

Is it OK to regress ỹ on X1 and x2? No, because x2 is endogenous. So instead,
substitute the reduced form for x2:

ỹ = X1β1 + (X1Π1 + Z2Π2 + ν)(β2 − β∗) + ε

Now rearrange the terms:

ỹ = X1θ1 + Z2θ2 + η, where :

ỹ = y − x2β
∗,

θ1 = β1 +Π1(β2 − β∗)

θ2 = Π2(β2 − β∗)

η = ν(β2 − β∗) + ε

The above regression is “ok”, because X1 and Z2 are both exogenous. Now let’s
think about the parameter θ2. Under the null hypothesis θ2 should be zero.
There are two reasons for this to not be the case: either the true β2 ̸= β∗ or
the endogeneity conditions are invalid, which would cause inconsistency in the
parameter estimates. Why do we say this is robust to weak identification? If
there is weak identification, then Π2 = 0, which should make our θ2 small. This
should cause us more often to fail to reject when there is weak identification
i.e. we avoid making type 1 errors because of incorrect inference due to weak
identification.

To summarise the procedure:

• Construct ỹ = y − x2β
∗
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• Regress ỹ on X1 and Z2 to get θ̂1, θ̂2

• Test θ2 = 0

• If fail to reject: β2 = β∗ seems reasonable and exogeneity assumptions
valid

• If reject: either β ̸= β∗ or exogeneity assumptions fail

To construct an “A-R confidence interval”:

• Construct a grid of potential β2

• For each gridpoint, test that value for β∗

• Each fail to reject gridpoint (say at the 5 % significance level) is part of
the 95% confidence interval

• Each reject gridpoint is not part of the confidence interval

Weak identification should cause the confidence intervals to blow up.

4 Specification Tests

Often when we study statistical models, we make tests about the parameters of
the model. We are inherently interested in the relationships between economic
variables and how it affects our understanding of the real world, and our theories.

But statistical models themselves have assumptions embedded within them.
These are not always testable. But sometimes they are.

4.1 Heteroskedasticity

The homoskedasticity assumption in linear regression models is testable. For
the moment, compare ŜClassical to ŜHC :

σ̂2 1

n

n∑
i=1

X ′
iXi vs.

1

n

n∑
i=1

ε̂2iX
′
iXi

Heteroskedasticity is actually only relevant to our inference if it is correlated
with any second order term of X. By this I mean heteroskedasticity could exist
in a strange manner that doesn’t result in any second order correlation, but we
wouldn’t really care about it. So a comprehensive way to test for heteroskedas-
ticity is to do the following. Do OLS as normal and collect the error terms ε̂.
Now take the squares of the error terms ε̂2i and regress it on all the cross terms.
E.g. if we have a constant, an x1 and an x2, we would regress:

ε̂2 = λ0 + λ1x1 + λ2x2 + λ11x
2
1 + λ22x

2
2 + λ12x1x2 + ν

Care must be taken in setting up this regression so as to not repeat terms.
We would then test the null that all the λ’s (excluding λ0) are equal to zero.
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The problem with this in practice is that there can be many parameters in this
regression (k(k + 1)/2).

Some simpler tests which aren’t as comprehensive, but nicer for smaller
samples:

• Just regress ε̂2 on the same stuff you regressed y on initially (k)

• The same as above, but include ŷ2 to capture some second order informa-
tion more likely to be relevant (k + 1)

• Same as above, but also include all the square terms (but not cross terms)
(2k)

4.2 Non-linearities

The “RESET” is a simple way to detect any obvious non-linearities where we
have ran a linear regression model. After initially running the linear regression,
take ŷ and run the regression:

y = Xβ + ŷ2γ2 + ŷ3γ3 + ...+ ν

We then test the null that the γ’s are equal to zero. If this is rejected, then
we reject the linear model.

4.3 Serial Correlation

Breusch-Godfrey test for serial correlation. In a panel-data or time series setting,
we can test whether the errors are serially correlated (this creates endogeneity
problems for models that have lagged dependent variables). In a times-series
setting, take the estimated error terms from the initial estimation and run the
regression:

ϵ̂t = ρ1ϵ̂t−1 + ρ2ϵ̂t−2 + ...+ ρ1ϵ̂t−p + ν

Generally we only test up to a set level p depending on the length of the
data. Note there is no constant: we do not need one as they are all mean zero
anyway. We test the null that all the ρ’s are zero. If we reject, then this is
evidence of serial correlation.

4.4 The Hausman Test

The Hausman statistic can be used generally in GMM frameworks to test restric-
tions in an overidentified model. Often we use the Hausman stat in panel data
settings to test whether the Random Effects assumption is true. Remember,
the Random Effects is more restricted than Fixed Effects because we are adding
the assumption that the entity effects are uncorrelated with the regressors.

H = n(β̂FE − β̂RE)
′(V (β̂FE)− V (β̂RE))

−1(β̂FE − β̂RE)
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H has an asymptotic chi-squared distribution. The number of degrees of
freedom is the number of additional assumptions being imposed. Here there are
k − 1 (each regressor is being assumed to be exogenous, although we wouldn’t
count the constant). A large H rejects the random effects moment restrictions
i.e. rejects that the entity effects are uncorrelated with the regressors. In
practice, we use classical estimates of V to ensure that the difference in the
variance is positive definite in small samples. This means the test is not robust
to failures of this assumption however.

4.5 The J-statistic

In overidentified models, the J stat acts as a measure of how close we are
to getting the sample moment conditions to line up to zero. A large J stat
suggests something has gone wrong. Under the null that all the population
moment conditions are valid, the J stat will have an asympototic Chi-squared
distribution. The number of degrees of freedom is l − k. Rejecting the null
because the J is generally taken to mean that at least one of our restrictions
is wrong. This can occur because we have treated a regressor incorrectly by
denoting it the wrong type:

• Endogenous regressor

• Exogenous regressor (or control, or included instrument)

• Instrumental variable (or excluded instrument)

5 Non-linear Estimators and Maximum Likeli-
hood

Our linear regression and its extensions to GMM and further applications in
panel and time series settings all have analytical solutions to the parameters
e.g.

β̂OLS = (X ′X)−1X ′y

There are many ways a regression function could be non-linear e.g.

y = β0 + β1x+ β2x
2 + ε

Here we have a quadratic term in x, so the function is non-linear in x. However,
from the econometricians point of view, this is still within the realms of linear
regression: we just treat x2 as a separate regressor from x. What really matters
is whether the function is linear in the parameters. For example, take:

y = β0 + β1x+ β2x
β3 + ε

Now this is a different class of problem from OLS due to the fact that β3 enters
the function non-linearly. If, like before, we choose our parameters to minimise
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the sum of squares, this is known as “non-linear least squares”. We generally
won’t have analytical solutions for such problems, but instead characterise the
solution, e.g.

β̂ = argmin
β0

1

n

n∑
i=1

ε̂2i

More generally:

β̂ = argmin
β0

1

n

n∑
i=1

(yi − f(Xi, β0))
2,

where f(Xi, β) is non-linear in β.

5.1 Non-Linear GMM

Similarly to non-linear least squares, we also have the analogous non-linear
GMM. This occurs when our moment conditions are non-linear, meaning we
characterise β̂ by:

β̂ = argmin
β0

nḡn(β0)
′Wḡn(β0),

where ḡn(β0) is non linear in β0. As you can see, like linear GMM, we still
choose the estimator to minimise the J statistic. How does the non-linear GMM
estimator behave? Let’s take a fixed W . It is first useful to think about the
“true β. It would be characterised in the following manner:

β = argmin
β0

nE[g(β0)]
′WE[g(β0)]

i.e. we can think of the true β as being the value that minimises our J statistic
if we could observe the whole population (hence the expectations rather than
sample averages). To get consistency, we need the objective function to be well
behaved (the regularity conditions are a little complicated) basically the above
equation has to have a unique solution for β0, and ḡn(β0) must be guaranteed
to converge to E[g(β0)]. For both our asymptotic inference to work, we also
need the objective to be twice differentiable at the true value. Remember from
before:

Non-efficient Linear GMM:

AV ar(β̂GMM ) = (Σ′
ZXWΣZX)−1Σ′

ZXWS−1WΣZX(Σ′
ZXWΣZX)−1

Efficient Linear GMM:

AV ar(β̂GMM ) = (Σ′
ZXWΣZX)−1

Our asymptotic variance has analogoues for the non-linear case. Note that in
the linear case, E[gn(β)] = E[Z ′

i(yi −Xiβ)]. We can see that:

E[
∂

∂β
gn(β)] = −ΣZX
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and by definition:
S = V ar(gn(β))

This means (not going to show the derivation, this is a shortcut) we can get our
analogoues for the non-linear case by replacing ΣZX with E[− ∂

∂β gn(β)] and be
careful to define S properly.

Like linear GMM, we can also do a two step process, by which we esti-
mate using an arbitrary positive definite W (there may be an analogy to 2SLS
available to use). After the first step we estimate:

Ŝ = AV ar(gn(β̂))

Just like before, Ŝ may be modified depending on our assumptions behind the
data. Then we use Ŵ = Ŝ−1, plug back in and re-estimate β̂.

5.2 Maximum Likelihood

The most common application of non-linear estimators is to maximum likeli-
hood problems. Sometimes our dependent variable doesn’t follow a continuous
structure, so OLS seems a bit inappropriate, because the “distance” from ŷ to
y isn’t meaningful. Data can take on lots of different types. Examples are

• Binary outcomes e.g. y describes whether or not an individual is in the
labour force or not. For this we typically use probit or logit regression

• Categorical outcomes e.g. y describes the religion of an individual. For
this we typically use multinomial logistic regression or a variant such as
hierarchical models

• Ordered outcome models e.g. y describes whether a country is non-
democratic, mixed, or democratic. Interesting because we can put the
categories in an order, but don’t want to impose a cardinal value. Typi-
cally use ordinal regression

• Count data e.g. y describes how many bedrooms a house has. Typically
use poisson or negative binomial regression

• Censored data; the dependent variable is continuous in some regions but
clustered on an edge. E.g. y is weekly expenditure on tobacco; continuous
for those who smoke but lots of zero values present. Typically use a Tobit
regression

Whatever the model, the goal of the estimator is to maximise the likelihood
function

L(θ) =
n∏

i=1

Li(θ)

The product comes from the fact that we think of the i outcomes as independent.
What Li(θ) represents depends on the context; if yi is a discrete outcome then
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it is simply the probability mass. But if it is continuous, we use the probability
density. Most of the time we are really doing conditional maximum likelihood,
because we model the probability of yi conditional on x, but make no model for
the probability of x. For example in a probit model:

Li(X, y, θ) = Φ(Xiθ) if yi = 1,

Li(X, y, θ) = 1− Φ(Xiθ) if yi = 0,

Note I wrote Li(X, y, θ), not L(Xi, yi, θ). If dealing with non-iid data, we may
want to explicitly model the L’s as having some sort of dependency on data from
multiple time periods, yet still treat the L’s themselves as being independent
(especially in a time series setting). We can also throw Z’s into the mix if we
want to be explicit about some sort of exogeneity idea, doesn’t really matter.

So how does the generic maximum likelihood estimation work? Given the
Li(θ) that we have, we can characterise the estimater as follows:

θ̂ = argmax
θ

n∏
i=1

Li(θ).

It’s much nicer to write this as a sum, not a product. To do so, introduce
li(θ) = logLi(θ), and note from the rule of logs:

log(
n∏

i=1

Li(θ)) =
n∑

i=1

li(θ)

Furthermore, since logs are an increasing function, it won’t affect the maximi-
sation procedure. Let’s also chuck in a 1

n for good measure:

θ̂ = argmax
θ

1

n

n∑
i=1

li(θ).

Similar to non-linear GMM, we can characterise the “true” θ0:

θ0 = argmax
θ

E[li(θ)].

To get consistency and our asymptotic normality, we again need regularity as-
sumptions: there must be a unique solution to the above, 1

n

∑n
i=1 li(θ) must

converge to E[li(θ)] and l(θ) must be twice differentiable at θ = θ0. What
about the asymptotic variance of the MLE estimator? To think about this, try
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to see the analogues when jumping from OLS (iid) to MLE.

OLS: heteroskedasticity robust standard errors:

AV ar(β̂) = S−1
XX ŜS−1

XX ,

where Ŝ = AV ar(
1

n

n∑
i=1

X ′
iϵi)

OLS: classical errors, simplifies to:

AV ar(β̂) = σ2Σ−1
XX

In OLS, we are trying to minimise

penalty =
1

n

n∑
i=1

(yi −Xiβ)
2,

whereas in MLE, we are trying to minimise:

penalty = − 1

n

n∑
i=1

li(θ).

(note the negative to turn it into a minimisation). Let’s consider the first and
second derivates of the penalty function in OLS:

∂

β
(penalty) = −2

1

n

n∑
i=1

X ′
i(yi −Xiβ)

∂2

∂β∂β′ (penalty) = 2
1

n

n∑
i=1

X ′
iXi

Let’s rewrite these slightly:

−1

2

∂

β
(penalty) =

1

n

n∑
i=1

X ′
iϵi

1

2

∂2

∂β∂β′ (penalty) =
1

n

n∑
i=1

X ′
iXi

Finally, the trick: take AVar on both sides to get the definition of S and use
definition of SXX

AV ar(−1

2

∂

β
(penalty)) = Ŝ

1

2

∂2

∂β∂β′ (penalty) = SXX
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We now have a way to analogise the AVar of OLS to the AVar of MLE. In-
stead of penalty, write the negative of the log-likelihood function, and do some
manipulation (using ∼ to mean similar):

1

4
AV ar(

∂

θ
(l(θ))) ∼ Ŝ

−1

2

∂2

θθ′
(l(θ)) ∼ SXX

We have special names for the expressions that arise here: the score:

si(θ) =
∂

∂θ
li(θ)

s̄n(θ) =
1

n
si(θ)

and the Hessian:

Hi(θ) =
∂2

∂θ∂θ′
li(θ)

H̄n(θ) =
1

n
si(θ)

This means, returning to the earlier equation, our analogies are:

1

4
AV ar(s̄n(θ)) ∼ Ŝ

−1

2
H̄n ∼ SXX

Let’s plug this into the general AVar formula for OLS:

AV ar(θ̂) = (−1

2
H̄n)

−1(
1

4
AV ar(s̄n(θ)))(−

1

2
H̄n)

−1

Simplifying:

AV ar(θ̂) = H̄−1
n AV ar(s̄n(θ))H̄

−1
n

Great, now we have a formula for the asymptotic variance of a MLE. But we
can go further, the same way the OLS AVar simplifies under classical errors. In
the special case that the model is correctly specified i.e. the likelihood function
reflects the true likelihood of the data, then AV ar(s̄n(θ)) = −H̄n. In this case,
the asymptotic variance simplifies to:

AV ar(θ̂) = −H̄n,
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Note that we also talk about the “information matrix” which is just the popu-
lation analogue to H̄n (but negative).

It seems like we have two different formulas for AVar. This is the same way
we have multiple formulas for AVar in OLS depending on our assumptions. In
MLE, if we are confident the model is correctly specified, then the latter is fine.
But generally, the former is more robust. Sometimes, bootstrapping is a useful
way of checking for unusual behaviour.

So to recap, to get AVar:

• Obtain the MLE estimate θ̂ based on numerically maximising the log-
likelihood function 1

n

∑n
i=1 li(θ)

• Calculate the AVar of the score: s(θ) = 1
n

∑n
i=1[

∂
∂θ li(θ)][

∂
∂θ li(θ)]

′

• Calculate the Hessian: H(θ) = 1
n

∂2

∂θ∂θ′ li(θ)

• Use the robust AVar: H−1AV ar(s)H−1

• Or use the correctly specified AVar: −H−1
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